

Apache Hive Essentials
Second Edition

Essential techniques to help you process, and get unique
insights from, big data

Dayong Du

BIRMINGHAM - MUMBAI

Apache Hive Essentials
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Noyonika Das
Content Development Editor: Mohammed Yusuf Imaratwale
Technical Editor: Jinesh Topiwala
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jason Monteiro
Production Coordinator: Aparna Bhagat

First published: February 2015
Second edition: June 2018

Production reference: 1290618

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-509-2

www.packtpub.com

http://www.packtpub.com

I dedicate this book to my daughter, Elaine

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and, as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Dayong Du is a big data practitioner, author, and coach with over 10 years' experience in
technology consulting, designing, and implementing enterprise big data architecture and
analytics in various industries, including finance, media, travel, and telecoms. He has a
master's degree in computer science from Dalhousie University and is a Cloudera certified
Hadoop developer. He is a cofounder of Toronto Big Data Professional Association and the
founder of DataFiber.com.

About the reviewers
Deepak Kumar Sahu is a big data technology-driven professional with extensive
experience in data gathering, modeling, analysis, validation, and architecture design to
build next-generation analytics platforms. He has a strong analytical and technical
background with good problem-solving skills to develop effective, complex business
solutions. He enjoys developing high-quality software and designing secure and scalable
data systems. He has written blogs on machine learning, data science, big data
management, and Blockchain. He can be reached at linkedin deepakkumarsahu.

Shuguang Li is a big data professional with extensive experience in designing and
implementing complete end-to-end Hadoop infrastructure using MapReduce, Spark, Hive,
Atlas, Kafka, Sqoop, HBase. The whole lifecycle covers data ingestion, data streaming, data
analyzing and data mining. He also has hands on experience in blockchain technology,
including fabric and sawtooth. Shuguang has more than 20 years' experience in financial
industry, like banks, stock exchange and mutual fund companies. He can be reach at
linkedin michael-li-12016915.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Overview of Big Data and Hive 6
A short history 6
Introducing big data 7
The relational and NoSQL databases versus Hadoop 9
Batch, real-time, and stream processing 9
Overview of the Hadoop ecosystem 11
Hive overview 12
Summary 14

Chapter 2: Setting Up the Hive Environment 15
Installing Hive from Apache 15
Installing Hive from vendors 19
Using Hive in the cloud 20
Using the Hive command 20
Using the Hive IDE 22
Summary 24

Chapter 3: Data Definition and Description 25
Understanding data types 25
Data type conversions 32
Data Definition Language 33
Database 33
Tables 36

Table creation 36
Table description 40
Table cleaning 42
Table alteration 42

Partitions 45
Buckets 51
Views 53
Summary 55

Chapter 4: Data Correlation and Scope 56
Project data with SELECT 56
Filtering data with conditions 59
Linking data with JOIN 61

INNER JOIN 62

Table of Contents

[ii]

OUTER JOIN 66
Special joins 69

Combining data with UNION 70
Summary 72

Chapter 5: Data Manipulation 73
Data exchanging with LOAD 74
Data exchange with INSERT 75
Data exchange with [EX|IM]PORT 79
Data sorting 80
Functions 85

Function tips for collections 86
Function tips for date and string 87
Virtual column functions 88

Transactions and locks 89
Transactions 89

UPDATE statement 90
DELETE statement 91
MERGE statement 91

Locks 93
Summary 94

Chapter 6: Data Aggregation and Sampling 95
Basic aggregation 95
Enhanced aggregation 101

Grouping sets 101
Rollup and Cube 104

Aggregation condition 106
Window functions 107

Window aggregate functions 108
Window sort functions 109
Window analytics functions 111
Window expression 112

Sampling 118
Random sampling 118
Bucket table sampling 118
Block sampling 119

Summary 120

Chapter 7: Performance Considerations 121
Performance utilities 121

EXPLAIN statement 122
ANALYZE statement 125
Logs 126

Design optimization 127

Table of Contents

[iii]

Partition table design 127
Bucket table design 128
Index design 128
Use skewed/temporary tables 130

Data optimization 130
File format 130
Compression 133
Storage optimization 134

Job optimization 135
Local mode 136
JVM reuse 136
Parallel execution 136
Join optimization 137

Common join 137
Map join 137
Bucket map join 138
Sort merge bucket (SMB) join 138
Sort merge bucket map (SMBM) join 138
Skew join 139

Job engine 139
Optimizer 140

Vectorization optimization 141
Cost-based optimization 141

Summary 141

Chapter 8: Extensibility Considerations 142
User-defined functions 142

UDF code template 143
UDAF code template 144
UDTF code template 147
Development and deployment 150

HPL/SQL 152
Streaming 153
SerDe 155
Summary 159

Chapter 9: Security Considerations 160
Authentication 160

Metastore authentication 161
Hiveserver2 authentication 162

Authorization 165
Legacy mode 165
Storage-based mode 166
SQL standard-based mode 167

Mask and encryption 170
The data-hashing function 171

Table of Contents

[iv]

The data-masking function 172
The data-encryption function 172
Other methods 173

Summary 174

Chapter 10: Working with Other Tools 175
The JDBC/ODBC connector 175
NoSQL 176
The Hue/Ambari Hive view 178
HCatalog 180
Oozie 181
Spark 183
Hivemall 184
Summary 184

Other Books You May Enjoy 185

Index 188

Preface
With an increasing interest in big data analysis, Hive over Hadoop becomes a cutting-edge
data solution for storing, computing, and analyzing big data. The SQL-like syntax makes
Hive easier to learn and is popularly accepted as a standard for interactive SQL queries
over big data. The variety of features available within Hive provides us with the capability
of doing complex big data analysis without advanced coding skills. The maturity of Hive
lets it gradually merge and share its valuable architecture and functionalities across
different computing frameworks beyond Hadoop.

Apache Hive Essentials, Second Edition prepares your journey to big data by covering the
introduction of backgrounds and concepts in the big data domain, along with the process of
setting up and getting familiar with your Hive working environment in the first two
chapters. In the next four chapters, the book guides you through discovering and
transforming the value behind big data using examples and skills of Hive query languages.
In the last four chapters, the book highlights the well-selected and advanced topics, such as
performance, security, and extensions, as exciting adventures for this worthwhile big data
journey.

Who this book is for
If you are a data analyst, developer, or user who wants to use Hive for exploring and
analyzing data in Hadoop, this is the right book for you. Whether you are new to big data
or already an experienced user, you will be able to master both basic and advanced
functions of Hive. Since HQL is quite similar to SQL, some previous experience with SQL
and databases will help with getting a better understanding of this book.

What this book covers
Chapter 1, Overview of Big Data and Hive, begins with the evolution of big data, Hadoop
ecosystem, and Hive. You will also learn the Hive architecture and advantages of using
Hive in big data analysis.

Chapter 2, Setting Up the Hive Environment, presents the Hive environment setup and
configuration. It also covers using Hive through the command line and development tools.

Preface

[2]

Chapter 3, Data Definition and Description, outlines the basic data types and data definition
language for tables, partitions, buckets, and views in Hive.

Chapter 4, Data Correlation and Scope, shows you ways to discover the data by querying,
linking, and scoping the data in Hive.

Chapter 5, Data Manipulation, focuses on the process of exchanging, moving, sorting, and
transforming the data in Hive.

Chapter 6, Data Aggregation and Sampling, explains the way of doing aggregation and
sample using aggregation functions, analytic functions, windowing, and sample clauses.

Chapter 7, Performance Considerations, introduces the best practices of performance
considerations in the aspect of design, file format, compression, storage, query, and job.

Chapter 8, Extensibility Considerations, describes the way of extending Hive by creating
user-defined functions, streaming, serializers, and deserializers.

Chapter 9, Security Considerations, introduces the area of Hive security in terms of
authentication, authorization, and encryption.

Chapter 10, Working with Other Tools, discusses how Hive works with other big data tools.

To get the most out of this book
This book will give you maximum benefit if you have some experience with SQL. If you are
a data analyst, developer, or simply someone who wants to quickly get started with Hive to
explore and analyze Big Data in Hadoop, this is the book for you. Additionally, install the
following in your system.

JDK 1.8
Hadoop 2.x.y
Ubuntu 16.04/CentOS 7

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[3]

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Apache- ​Hive- ​Essentials- ​Second- ​Edition. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/ApacheHiveEssentialsSecon

dEdition_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Add the necessary system path variables in the ~/.profile or ~/.bashrc file"

http://www.packtpub.com/support
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/Apache-Hive-Essentials-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ApacheHiveEssentialsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheHiveEssentialsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheHiveEssentialsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheHiveEssentialsSecondEdition_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

export HADOOP_HOME=/opt/hadoop
export HADOOP_CONF_DIR=/opt/hadoop/conf
export HIVE_HOME=/opt/hive
export HIVE_CONF_DIR=/opt/hive/conf
export PATH=$PATH:$HIVE_HOME/bin:$HADOOP_HOME/
bin:$HADOOP_HOME/sbin

Any command-line or beeline interactive input or output is written as follows:

$hive
$beeline -u "jdbc:hive2://localhost:10000"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select Preference from the interface."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

http://www.packtpub.com/submit-errata

Preface

[5]

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com/
https://www.packtpub.com/

1
Overview of Big Data and Hive

This chapter is an overview of big data and Hive, especially in the Hadoop ecosystem. It
briefly introduces the evolution of big data so that readers know where they are in the
journey of big data and can find out their preferred areas in future learning. This chapter
also covers how Hive has become one of the leading tools in the big data ecosystem and
why it is still competitive.

In this chapter, we will cover the following topics:

A short history from the database, data warehouse to big data
Introducing big data
Relational and NoSQL databases versus Hadoop
Batch, real-time, and stream processing
Hadoop ecosystem overview
Hive overview

A short history
In the 1960s, when computers became a more cost-effective option for businesses, people
started to use databases to manage data. Later on, in the 1970s, relational databases became
more popular for business needs since they connected physical data with the logical
business easily and closely. In the next decade, Structured Query Language (SQL) became
the standard query language for databases. The effectiveness and simplicity of SQL
motivated lots of people to use databases and brought databases closer to a wide range of
users and developers. Soon, it was observed that people used databases for data application
and management and this continued for a long period of time.

Overview of Big Data and Hive Chapter 1

[7]

Once plenty of data was collected, people started to think about how to deal with the
historical data. Then, the term data warehousing came up in the 1990s. From that time
onward, people started discussing how to evaluate current performance by reviewing the
historical data. Various data models and tools were created to help enterprises effectively
manage, transform, and analyze their historical data. Traditional relational databases also
evolved to provide more advanced aggregation and analyzed functions as well as
optimizations for data warehousing. The leading query language was still SQL, but it was
more intuitive and powerful compared to the previous versions. The data was still well-
structured and the model was normalized. As we entered the 2000s, the internet gradually
became the topmost industry for the creation of the majority of data in terms of variety and
volume. Newer technologies, such as social media analytics, web mining, and data
visualizations, helped lots of businesses and companies process massive amounts of data
for a better understanding of their customers, products, competition, and markets. The data
volume grew and the data format changed faster than ever before, which forced people to
search for new solutions, especially in the research and open source areas. As a result, big
data became a hot topic and a challenging field for many researchers and companies.

However, in every challenge there lies great opportunity. In the 2010s, Hadoop, which was
one of the big data open source projects, started to gain wide attention due to its open
source license, active communities, and power to deal with the large volumes of data. This
was one of the few times that an open source project led to the changes in technology
trends before any commercial software products. Soon after, the NoSQL database, real-time
analytics, and machine learning, as followers, quickly became important components on
top of the Hadoop big data ecosystem. Armed with these big data technologies, companies
were able to review the past, evaluate the current, and grasp the future opportunities.

Introducing big data
Big Data is not simply a big volume of data. Here, the word Big refers to the big scope of
data. A well-known saying in this domain is to describe big data with the help of three
words starting with the letter V: volume, velocity, and variety. But the analytical and data
science world has seen data varying in other dimensions in addition to the fundament three
Vs of big data, such as veracity, variability, volatility, visualization, and value. The different
Vs mentioned so far are explained as follows:

Volume: This refers to the amount of data generated in seconds. 90% of the
world's data today has been created in the last two years. Since that time, the
data in the world doubles every two years. Such big volumes of data are mainly
generated by machines, networks, social media, and sensors, including
structured, semi-structured, and unstructured data.

Overview of Big Data and Hive Chapter 1

[8]

Velocity: This refers to the speed at which the data is generated, stored,
analyzed, and moved around. With the availability of internet-connected devices,
wireless or wired machines and sensors can pass on their data as soon as it is
created. This leads to real-time data streaming and helps businesses to make
valuable and fast decisions.
Variety: This refers to the different data formats. Data used to be stored in
the .txt, .csv, and .dat formats from data sources such as filesystems,
spreadsheets, and databases. This type of data, which resides in a fixed field
within a record or file, is called structured data. Nowadays, data is not always in
the traditional structured format. The newer semi-structured or unstructured
forms of data are also generated by various methods such as email, photos,
audio, video, PDFs, SMSes, or even something we have no idea about. These
varieties of data formats create problems for storing and analyzing data. This is
one of the major challenges we need to overcome in the big data domain.
Veracity: This refers to the quality of data, such as trustworthiness, biases, noise,
and abnormality in data. Corrupted data is quite normal. It could originate due
to a number of reasons, such as typos, missing or uncommon abbreviations, data
reprocessing, and system failures. However, ignoring this malicious data could
lead to inaccurate data analysis and eventually a wrong decision. Therefore,
making sure the data is correct in terms of data audition and correction is very
important for big data analysis.
Variability: This refers to the changing of data. It means that the same data could
have different meanings in different contexts. This is particularly important
when carrying out sentiment analysis. The analysis algorithms are able to
understand the context and discover the exact meaning and values of data in that
context.
Volatility: This refers to how long the data is valid and stored. This is
particularly important for real-time analysis. It requires a target time window of
data to be determined so that analysts can focus on particular questions and gain
good performance out of the analysis.
Visualization: This refers to the way of making data well understood.
Visualization does not only mean ordinary graphs or pie charts; it also makes
vast amounts of data comprehensible in a multidimensional view that is easy to
understand. Visualization is an innovative way to show changes in data. It
requires lots of interaction, conversations, and joint efforts between big data
analysts and business-domain experts to make the visualization meaningful.
Value: This refers to the knowledge gained from data analysis on big data. The
value of big data is how organizations turn themselves into big data-driven
companies and use the insight from big data analysis for their decision-making.

Overview of Big Data and Hive Chapter 1

[9]

In summary, big data is not just about lots of data, it is a practice to discover new insight
from existing data and guide the analysis of new data. A big-data-driven business will be
more agile and competitive to overcome challenges and win competitions.

The relational and NoSQL databases versus
Hadoop
To better understand the differences among the relational database, NoSQL database, and
Hadoop, let's compare them with ways of traveling. You will be surprised to find that they
have many similarities. When people travel, they either take cars or airplanes, depending
on the travel distance and cost. For example, when you travel to Vancouver from Toronto,
an airplane is always the first choice in terms of the travel time versus cost. When you
travel to Niagara Falls from Toronto, a car is always a good choice. When you travel to
Montreal from Toronto, some people may prefer taking a car to an airplane. The distance
and cost here are like the big data volume and investment. The traditional relational
database is like the car, and the Hadoop big data tool is like the airplane. When you deal
with a small amount of data (short distance), a relational database (like the car) is always
the best choice, since it is fast and agile to deal with a small or moderate amount of data.
When you deal with a big amount of data (long distance), Hadoop (like the airplane) is the
best choice, since it is more linear-scalable, fast, and stable to deal with the big volume of
data. You could drive from Toronto to Vancouver, but it takes too much time. You can also
take an airplane from Toronto to Niagara Falls, but it would take more time on your way to
the airport and cost more than traveling by car. In addition, you could take a ship or a train.
This is like a NoSQL database, which offers characteristics and balance from both a
relational database and Hadoop in terms of good performance and various data format
support for moderate to large amounts of data.

Batch, real-time, and stream processing
Batch processing is used to process data in batches. It reads data from the input, processes
it, and writes it to the output. Apache Hadoop is the most well-known and popular open
source implementation of the distributed batch processing system using the MapReduce
paradigm. The data is stored in a shared and distributed file system, called Hadoop
Distributed File System (HDFS), and divided into splits, which are the logical data
divisions for MapReduce processing.

Overview of Big Data and Hive Chapter 1

[10]

To process these splits using the MapReduce paradigm, the map task reads the splits and
passes all of its key/value pairs to a map function, and writes the results to intermediate
files. After the map phase is completed, the reducer reads intermediate files sent through
the shuffle process and passes them to the reduce function. Finally, the reduce task writes
results to the final output files. The advantages of the MapReduce model include making
distributed programming easier, near-linear speed-up, good scalability, as well as fault
tolerance. The disadvantage of this batch processing model is being unable to execute
recursive or iterative jobs. In addition, the obvious batch behavior is that all input must be
ready by map before the reduce job starts, which makes MapReduce unsuitable for online
and stream-processing use cases.

Real-time processing is used to process data and get the result almost immediately. This
concept in the area of real-time ad hoc queries over big data was first implemented in
Dremel by Google. It uses a novel columnar storage format for nested structures with fast
index and scalable aggregation algorithms for computing query results in parallel instead
of batch sequences. These two techniques are the major characters for real-time processing
and are used by similar implementations, such as Impala (https:/ ​/​impala. ​apache. ​org/ ​),
Presto (https:/​/ ​prestodb. ​io/ ​), and Drill (https:/ ​/​drill. ​apache. ​org/ ​), powered by
the columnar storage data format, such as Parquet (https:/ ​/​parquet. ​apache. ​org/ ​), ORC
(https:/​/​orc.​apache. ​org/ ​), CarbonData (https:/ ​/​carbondata. ​apache. ​org/​), and Arrow
(https:/​/​arrow.​apache. ​org/ ​). On the other hand, in-memory computing no doubt offers
faster solutions for real-time processing. In-memory computing offers very high
bandwidth, which is more than 10 gigabytes/second, compared to a hard disk's 200
megabytes/second. Also, the latency is comparatively lower, nanoseconds versus
milliseconds, compared to hard disks. With the price of RAM getting lower and lower each
day, in-memory computing is more affordable as a real-time solution, such as Apache
Spark (https:/​/​spark. ​apache. ​org/ ​), which is a popular open source implementation of in-
memory computing. Spark can be easily integrated with Hadoop, and its in-memory data
structure Resilient Distributed Dataset (RDD) can be generated from data sources, such as
HDFS and HBase, for efficient caching.

Stream processing is used to continuously process and act on the live stream data to get a
result. In stream processing, there are two commonly used general-purpose stream
processing frameworks: Storm (https:/ ​/​storm. ​apache. ​org/ ​) and Flink (https:/ ​/ ​flink.
apache.​org/​). Both frameworks run on the Java Virtual Machine (JVM) and both process
keyed streams. In terms of the programming model, Storm gives you the basic tools to
build a framework, while Flink gives you a well-defined and easily used framework. In
addition, Samza (http:/ ​/​samza. ​apache. ​org/ ​) and Kafka Stream (https:/ ​/​kafka. ​apache.
org/​documentation/ ​streams/ ​) leverage Kafka for both message-caching and
transformation. Recently, Spark also provides a type of stream processing in terms of its
innovative continuous-processing mode.

https://impala.apache.org/
https://impala.apache.org/
https://impala.apache.org/
https://impala.apache.org/
https://impala.apache.org/
https://impala.apache.org/
https://impala.apache.org/
https://impala.apache.org/
https://impala.apache.org/
https://impala.apache.org/
https://prestodb.io/
https://prestodb.io/
https://prestodb.io/
https://prestodb.io/
https://prestodb.io/
https://prestodb.io/
https://prestodb.io/
https://prestodb.io/
https://drill.apache.org/
https://drill.apache.org/
https://drill.apache.org/
https://drill.apache.org/
https://drill.apache.org/
https://drill.apache.org/
https://drill.apache.org/
https://drill.apache.org/
https://drill.apache.org/
https://drill.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://carbondata.apache.org/
https://carbondata.apache.org/
https://carbondata.apache.org/
https://carbondata.apache.org/
https://carbondata.apache.org/
https://carbondata.apache.org/
https://carbondata.apache.org/
https://carbondata.apache.org/
https://carbondata.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://flink.apache.org/
http://samza.apache.org/
http://samza.apache.org/
http://samza.apache.org/
http://samza.apache.org/
http://samza.apache.org/
http://samza.apache.org/
http://samza.apache.org/
http://samza.apache.org/
http://samza.apache.org/
http://samza.apache.org/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/

Overview of Big Data and Hive Chapter 1

[11]

Overview of the Hadoop ecosystem
Hadoop was first released by Apache in 2011 as Version 1.0.0, which only contained HDFS
and MapReduce. Hadoop was designed as both a computing (MapReduce) and storage
(HDFS) platform from the very beginning. With the increasing need for big data analysis,
Hadoop attracts lots of other software to resolve big data questions and merges into a
Hadoop-centric big data ecosystem. The following diagram gives a brief overview of the
Hadoop big data ecosystem in Apache stack:

Apache Hadoop ecosystem

In the current Hadoop ecosystem, HDFS is still the major option when using hard disk
storage, and Alluxio provides virtually distributed memory alternatives. On top of HDFS,
the Parquet, Avro, and ORC data formats could be used along with a snappy compression
algorithm for computing and storage optimization. Yarn, as the first Hadoop general-
purpose resource manager, is designed for better resource management and
scalability. Spark and Ignite, as in-memory computing engines, are able to run on Yarn to
work with Hadoop closely, too.

Overview of Big Data and Hive Chapter 1

[12]

On the other hand, Kafka, Flink, and Storm are dominating stream processing. HBase is a
leading NoSQL database, especially on Hadoop clusters. For machine learning, it comes to
Spark MLlib and Madlib along with a new Mahout. Sqoop is still one of the leading tools
for exchanging data between Hadoop and relational databases. Flume is a matured,
distributed, and reliable log-collecting tool to move or collect data to HDFS. Impala and
Drill are able to launch interactive SQL queries directly against the data on Hadoop. In
addition, Hive over Spark/Tez along with Live Long And Process (LLAP) offers users the
ability to run a query in long-lived processes on different computing frameworks, rather
than MapReduce, with in-memory data caching. As a result, Hive is playing more
important roles in the ecosystem than ever. We are also glad to see that Ambari as a new
generation of cluster-management tools provides more powerful cluster management and
coordination in addition to Zookeeper. For scheduling and workflow management, we can
either use Airflow or Oozie. Finally, we have an open source governance and metadata
service come into the picture, Altas, which empowers the compliance and lineage of big
data in the ecosystem.

Hive overview
Hive is a standard for SQL queries over petabytes of data in Hadoop. It provides SQL-like
access to data in HDFS, enabling Hadoop to be used as a data warehouse. The Hive Query
Language (HQL) has similar semantics and functions as standard SQL in the relational
database, so that experienced database analysts can easily get their hands on it. Hive's
query language can run on different computing engines, such as MapReduce, Tez, and
Spark.

Hive's metadata structure provides a high-level, table-like structure on top of HDFS. It
supports three main data structures, tables, partitions, and buckets. The tables correspond
to HDFS directories and can be divided into partitions, where data files can be divided into
buckets. Hive's metadata structure is usually the Schema of the Schema-on-Read concept on
Hadoop, which means you do not have to define the schema in Hive before you store data
in HDFS. Applying Hive metadata after storing data brings more flexibility and efficiency
to your data work. The popularity of Hive's metadata makes it the de facto way to describe
big data and is used by many tools in the big data ecosystem.

Overview of Big Data and Hive Chapter 1

[13]

The following diagram is the architecture view of Hive in the Hadoop ecosystem. The Hive
metadata store (also called the metastore) can use either embedded, local, or remote
databases. The thrift server is built on Apache Thrift Server technology. With its latest
version 2, hiveserver2 is able to handle multiple concurrent clients, support Kerberos,
LDAP, and custom pluggable authentication, and provide better options for JDBC and
ODBC clients, especially for metadata access.

Hive architecture

Here are some highlights of Hive that we can keep in mind moving forward:

Hive provides a simple and optimized query model with less coding than
MapReduce
HQL and SQL have a similar syntax
Hive's query response time is typically much faster than others on the same
volume of big datasets
Hive supports running on different computing frameworks
Hive supports ad hoc querying data on HDFS and HBase
Hive supports user-defined java/scala functions, scripts, and procedure
languages to extend its functionality
Matured JDBC and ODBC drivers allow many applications to pull Hive data for
seamless reporting
Hive allows users to read data in arbitrary formats, using SerDes and
Input/Output formats

Overview of Big Data and Hive Chapter 1

[14]

Hive is a stable and reliable batch-processing tool, which is production-ready for
a long time
Hive has a well-defined architecture for metadata management, authentication,
and query optimizations
There is a big community of practitioners and developers working on and using
Hive

Summary
After going through this chapter, we are now able to understand when and why to use big
data instead of a traditional relational database. We also learned about the difference
between batch processing, real-time processing, and stream processing. We are now
familiar with the Hadoop ecosystem, especially Hive. We have traveled back in time and
brushed through the history of databases, data warehouse, and big data. We also explored
some big data terms, the Hadoop ecosystem, the Hive architecture, and the advantage of
using Hive.

In the next chapter, we will practice installing Hive and review all the tools needed to start
using Hive in the command-line environment.

2
Setting Up the Hive

Environment
This chapter will introduce how to install and set up the Hive environment in the cluster
and cloud. It also covers the usage of basic Hive commands and the Hive integrated-
development environment.

In this chapter, we will cover the following topics:

Installing Hive from Apache
Installing Hive from vendors
Using Hive in the cloud
Using the Hive command
Using the Hive IDE

Installing Hive from Apache
To introduce the Hive installation, we will use Hive version 2.3.3 as an example. The pre-
installation requirements for this installation are as follows:

JDK 1.8
Hadoop 2.x.y
Ubuntu 16.04/CentOS 7

Setting Up the Hive Environment Chapter 2

[16]

Since we focus on Hive in this book, the installation steps for Java and
Hadoop are not provided here. For steps on installing them, please refer
to https:/ ​/ ​www. ​java. ​com/ ​en/​download/ ​help/ ​download_ ​options.
xml and http:/ ​/ ​hadoop. ​apache. ​org/ ​docs/ ​current/ ​hadoop- ​project-
dist/ ​hadoop- ​common/ ​ClusterSetup. ​html.

The following steps describe how to install Apache Hive in the command-line environment:

Download Hive from Apache Hive and unpack it:1.

 $cd /opt
 $wget https://archive.apache.org/dist/hive/hive-2.3.3/apache-
 hive-2.3.3-bin.tar.gz
 $tar -zxvf apache-hive-2.3.3-bin.tar.gz
 $ln -sfn /opt/apache-hive-2.3.3 /opt/hive

Add the necessary system path variables in the ~/.profile or ~/.bashrc file:2.

 export HADOOP_HOME=/opt/hadoop
 export HADOOP_CONF_DIR=/opt/hadoop/conf
 export HIVE_HOME=/opt/hive
 export HIVE_CONF_DIR=/opt/hive/conf
 export PATH=$PATH:$HIVE_HOME/bin:$HADOOP_HOME/
 bin:$HADOOP_HOME/sbin

Enable the settings immediately:3.

 $source ~/.profile

Create the configuration files:4.

 $cd /opt/hive/conf
 $cp hive-default.xml.template hive-site.xml
 $cp hive-exec-log4j.properties.template hive-exec-
 log4j.properties
 $cp hive-log4j.properties.template hive-log4j.properties

Modify $HIVE_HOME/conf/hive-site.xml, which has some important5.
parameters to set:

hive.metastore.warehourse.dir: This is the path to the Hive
warehouse location. By default, it is at /user/hive/warehouse.
hive.exec.scratchdir: This is the temporary data file location. By
default, it is at /tmp/hive-${user.name}.

https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
https://www.java.com/en/download/help/download_options.xml
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html

Setting Up the Hive Environment Chapter 2

[17]

By default, Hive uses the Derby (http:/ ​/​db. ​apache. ​org/ ​derby/ ​) database as the
metadata store. It can also use other relational databases, such as Oracle,
PostgreSQL, or MySQL, as the metastore. To configure the metastore on other
databases, the following parameters should be configured in hive-site.xml:

javax.jdo.option.ConnectionURL: This is the JDBC URL database
javax.jdo.option.ConnectionDriverName: This is the JDBC
driver class name
javax.jdo.option.ConnectionUserName: This is the username
used to access the database
javax.jdo.option.ConnectionPassword: This is the password
used to access the database

The following is a sample setting using MySQL as the metastore database:

<property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:mysql://localhost/metastore?createDatabaseIfNotExist=true
 </value>
 <description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>com.mysql.jdbc.Driver</value>
 <description>Driver class name for a JDBC metastore</description>
</property>
<property>
 <name>javax.jdo.option.ConnectionUserName</name>
 <value>hive</value>
 <description>username to use against metastore database</description>
</property>
<property>
 <name>javax.jdo.option.ConnectionPassword</name>
 <value>mypassword</value>
 <description>password to use against metastore database</description>
</property>
<property>
 <name>hive.metastore.uris</name>
 <value>thrift://localhost:9083</value>
 <description>By specify this we do not use local mode of
metastore</description>
</property>

http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/

Setting Up the Hive Environment Chapter 2

[18]

Make sure that the MySQL JDBC driver is available at $HIVE_HOME/lib:6.

 $ln -sfn /usr/share/java/mysql-connector-java.jar
 /opt/hive/lib/mysql-connector-java.jar

The difference between using default Derby or configured relational
databases as the metastore is that the configured relational database offers
a shared service so that all hive users can see the same metadata set.
However, the default metastore setting creates the metastore under the
folder of the current user, so it is only visible to this user. In the real
production environment, it always configures an external relational
database as the Hive metastore.

Create the Hive metastore table in the database with proper permission, and7.
initialize the schema with schematool:

 $mysql -u root --password="mypassword" -f \
 -e "DROP DATABASE IF EXISTS metastore; CREATE DATABASE IF NOT
 EXISTS metastore;"
 $mysql -u root --password="mypassword" \
 -e "GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'localhost'
 IDENTIFIED BY 'mypassword'; FLUSH PRIVILEGES;"
 $schematool -dbType mysql -initSchema

Since Hive runs on Hadoop, first start the hdfs and yarn services, then8.
the metastore and hiveserver2 services:

 $start-dfs.sh
 $start-yarn.sh
 $hive --service metastore 1>> /tmp/meta.log 2>> /tmp/meta.log &
 $hive --service hiveserver2 1>> /tmp/hs2.log 2>> /tmp/hs2.log &

Connect Hive with either the hive or beeline command to verify that the9.
installation is successful:

 $hive
 $beeline -u "jdbc:hive2://localhost:10000"

Setting Up the Hive Environment Chapter 2

[19]

Installing Hive from vendors
Right now, many companies, such as Cloudera and Hortonworks, have packaged the
Hadoop ecosystem and management tools into an easily manageable enterprise
distribution. Each company takes a slightly different strategy, but the consensus for all of
these packages is to make the Hadoop ecosystem easier and more stable for enterprise
usage. For example, we can easily install Hive with the Hadoop management tools, such
as Cloudera Manager (https:/ ​/ ​www. ​cloudera. ​com/ ​products/ ​product- ​components/
cloudera-​manager. ​html) or Ambari (https:/ ​/​ambari. ​apache. ​org/ ​), which are packed in
vendor distributions. Once the management tool is installed and started, we can add the
Hive service to the Hadoop cluster with the following steps:

Log in to the Cloudera Manager/Ambari and click the Add a Service option to1.
enter the Add Service Wizard

Choose the service to install, such as hive2.

Choose the proper hosts for hiveserver2, metastore server, WebHCat3.
server, and so on

Configure the metastore server database connections as well as other4.
necessary configurations

Review and confirm the installation5.

For practice, we can import the vendors quick-start sandbox (https:/ ​/
hortonworks. ​com/ ​products/ ​sandbox/ ​ or https:/ ​/​www. ​cloudera. ​com/
downloads/ ​quickstart_ ​vms.​html), which has commonly-used Hadoop
ecosystem tools pre-installed. In addition, an automatic and optimized
Hadoop environment provision virtual machine is also available (https:/
/​github. ​com/ ​datafibers/ ​lab_ ​env) to install on computers with less
RAM.

https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://ambari.apache.org/
https://ambari.apache.org/
https://ambari.apache.org/
https://ambari.apache.org/
https://ambari.apache.org/
https://ambari.apache.org/
https://ambari.apache.org/
https://ambari.apache.org/
https://ambari.apache.org/
https://ambari.apache.org/
https://hortonworks.com/products/sandbox/
https://hortonworks.com/products/sandbox/
https://hortonworks.com/products/sandbox/
https://hortonworks.com/products/sandbox/
https://hortonworks.com/products/sandbox/
https://hortonworks.com/products/sandbox/
https://hortonworks.com/products/sandbox/
https://hortonworks.com/products/sandbox/
https://hortonworks.com/products/sandbox/
https://hortonworks.com/products/sandbox/
https://hortonworks.com/products/sandbox/
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env
https://github.com/datafibers/lab_env

Setting Up the Hive Environment Chapter 2

[20]

Using Hive in the cloud
Right now, all major cloud service providers, such as Amazon, Microsoft, and Google, offer
matured Hadoop and Hive as services in the cloud. Using the cloud version of Hive is very
convenient. It requires almost no installation and setup. Amazon EMR (http:/ ​/ ​aws.
amazon.​com/​elasticmapreduce/ ​) is the earliest Hadoop service in the cloud. However, it is
not a pure open source version since it is customized to run only on Amazon Web Services
(AWS). Hadoop enterprise service and distribution providers, such as Cloudera and
Hortonworks, also provide tools to easily deploy their own distributions on different public
or private clouds. Cloudera Director (http:/ ​/​www. ​cloudera. ​com/ ​content/ ​cloudera/ ​en/
products-​and-​services/ ​director. ​html) and Cloudbreak (https:/ ​/​hortonworks. ​com/
open-​source/​cloudbreak/ ​), open up Hadoop deployments in the cloud through a simple,
self-service interface, and are fully supported on AWS, Windows Azure, Google Cloud
Platform, and OpenStack. Although Hadoop was first built on Linux, Hortonworks and
Microsoft have already partnered to bring Hadoop to the Windows-based platform and
cloud successfully. The consensus among all the Hadoop cloud service providers here is to
allow enterprises to provision highly available, flexible, highly secure, easily manageable,
and governable Hadoop clusters with less effort and little cost.

Using the Hive command
Hive first started with hiveserver1. However, this version of Hive server was not very
stable. It sometimes suspended or blocked the client's connection quietly. Since v0.11.0,
Hive has included a new thrift server called hivesever2 to replace hiveserver1.
hiveserver2 has an enhanced server designed for multiple client concurrency and
improved authentication. It also recommends using beeline as the major Hive command-
line interface instead of the hive command. The primary difference between the two
versions of servers is how the clients connect to them. hive is an Apache-Thrift-based
client, and beeline is a JDBC client. The hive command directly connects to the Hive
drivers, so we need to install the Hive library on the client. However, beeline connects to
hiveserver2 through JDBC connections without installing Hive libraries on the client.
That means we can run beeline remotely from outside the cluster. For more usage of
hiveserver2 and its API access, refer to https:/ ​/​cwiki. ​apache. ​org/ ​confluence/
display/​Hive/​HiveServer2+Clients.

The following two tables list the commonly-used commands in different command
modes considering different user preferences:

http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://hortonworks.com/open-source/cloudbreak/
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients

Setting Up the Hive Environment Chapter 2

[21]

Purpose hiveserver2 - beeline hiveserver1 - hive

Connect server beeline –u <jdbc_url> hive -h <hostname> -p <port>

Help beeline -h hive -H

Run query
beeline -e "hql query"
beeline -f hql_query_file.hql
beeline -i hql_init_file.hql

hive -e "hql query"
hive -f hql_query_file.hql
hive -i hql_init_file.hql

Set
variable

beeline --hivevar
var_name=var_value

hive --hivevar var_name=var_value

Purpose hiveserver2 - beeline hiveserver1 - hive

Enter mode beeline hive

Connect server !connect <jdbc_url> N/A

List tables !table
show tables; --also support

show tables;

List columns !column table_name
desc table_name;

desc table_name;

Run query select * from table_name; select * from table_name;

Save result !record result_file.dat
!record

N/A

Run shell cmd !sh ls !ls;

Run dfs cmd dfs -ls; dfs -ls;

Run hql file !run hql_query_file.hql source hql_query_file.hql;

Quit mode !quit quit;

In addition, Hive configuration settings and properties can be accessed
and overwritten by the SET keyword in the interactive mode. For more
details, refer to the Apache Hive wiki at https:/ ​/​cwiki. ​apache. ​org/
confluence/ ​display/ ​Hive/ ​Configuration+Properties.
For beeline, ; is not needed after the command that starts with !. Both
commands do not support running a pasted query with <tab> inside,
because <tab> is used for auto-complete by default in the environment.
Alternatively, running the query from files has no such issues. In
interactive mode, we can use the keyboard's up and down arrow keys to
retrieve the previous commands. The !history command can be used in
beeline to show the command's history. In addition, the dfs command
may be disabled in beeline for permissions control in some Hadoop
distributions. Both commands support variable substitution, which refers
to https:/ ​/ ​cwiki. ​apache. ​org/​confluence/ ​display/ ​Hive/
LanguageManual+VariableSubstitution.

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution

Setting Up the Hive Environment Chapter 2

[22]

Using the Hive IDE
Besides the command-line interface, there are other Integrated Development
Environment (IDE) tools available to support Hive. One of the best is Oracle SQL
Developer, which leverages the powerful functionalities of the Oracle IDE and is totally
free to use. Since Oracle SQL Developer supports general JDBC connections, it is quite
convenient to switch between Hive and other JDBC-supported databases in the same IDE.
Oracle SQL Developer has supported Hive since v4.0.3. Configuring it to work with Hive is
quite straightforward:

Download Oracle SQL Developer (http:/ ​/ ​www.​oracle. ​com/ ​technetwork/1.
developer- ​tools/ ​sql- ​developer/ ​downloads/ ​index. ​html).
Download the Hive JDBC drivers (https:/ ​/​www. ​cloudera. ​com/​downloads/2.
connectors/ ​hive/ ​jdbc. ​html).
Unzip the driver file to a local directory.3.
Start Oracle SQL Developer and navigate to Preferences | Database | Third4.
Party JDBC Drivers.
Add all of the JAR files contained in the unzipped directory to the window, as5.
shown in the following screenshot:

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html

Setting Up the Hive Environment Chapter 2

[23]

Click on the OK button and restart Oracle SQL Developer.6.
Create a new connection in the Hive tab, giving the proper Connection7.
Name, Username, Password, Host name (hiveserver2 hostname), Port,
and Database. Then, click on the Add and Connect buttons to connect to Hive:

In Oracle SQL Developer, we can run all Hive interactive commands and HQL queries. We
can also leverage the wizard of the tool to browse or export data in the Hive tables.
Besides Oracle SQL Developer, other database IDEs, such as DBVisualizer (https:/ ​/​www.
dbvis.​com/​) or SQuirrel SQL Client (http:/ ​/​squirrel- ​sql.​sourceforge. ​net/ ​), can also
use the ODBC or JDBC driver to connect to Hive. Hive also has its own built-in web IDE,
Hive Web Interface. However, it is not powerful and seldom used. Instead, both Ambari
Hive View and Hue (http:/ ​/​gethue. ​com/ ​) are popular, user-friendly, and powerful web
IDEs for the Hadoop and Hive ecosystem. There are more details about using these IDEs
in Chapter 10, Working with Other Tools.

https://www.dbvis.com/
https://www.dbvis.com/
https://www.dbvis.com/
https://www.dbvis.com/
https://www.dbvis.com/
https://www.dbvis.com/
https://www.dbvis.com/
https://www.dbvis.com/
https://www.dbvis.com/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
http://gethue.com/
http://gethue.com/
http://gethue.com/
http://gethue.com/
http://gethue.com/
http://gethue.com/
http://gethue.com/
http://gethue.com/

Setting Up the Hive Environment Chapter 2

[24]

Summary
In this chapter, we learned how to set up Hive in different environments. We also looked
into a few examples of using Hive commands in both the command-line and the interactive
mode for beeline and hive. Since it is quite productive to use IDE with Hive, we walked
through the setup of Oracle SQL Developer for Hive. Now that you've finished this chapter,
you should be able to set up your own Hive environment locally and use Hive.

In the next chapter, we will dive into the details of Hive's data definition languages.

3
Data Definition and Description

This chapter introduces the basic data types, data definition language, and schema in Hive
to describe data. It also covers best practices to describe data correctly and effectively by
using internal or external tables, partitions, buckets, and views. In this chapter, we will
cover the following topics:

Understanding data types
Data type conversions
Data definition language
Databases
Tables
Partitions
Buckets
Views

Understanding data types
Hive data types are categorized into two types: primitive and complex. String and Int are
the most useful primitive types, which are supported by most HQL functions. The details of
primitive types are as follows:

ay contain a set of any type of fields. Complex types allow the nesting of types. The details
of complex types a

Primitive type Description Example

TINYINT
It has 1 byte, from -128 to 127. The postfix is Y. It is used
as a small range of numbers.

10Y

SMALLINT
It has 2 bytes, from -32,768 to 32,767. The postfix is
S. It is used as a regular descriptive number. 10S

Data Definition and Description Chapter 3

[26]

Primitive type Description Example

INT
It has 4 bytes, from -2,147,483,648 to
2,147,483,647. 10

BIGINT
It has 8 bytes, from -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807. The postfix is L. 100L

FLOAT

This is a 4 byte single-precision floating-point number, from
1.40129846432481707e-45 to
3.40282346638528860e+38 (positive or negative).
Scientific notation is not yet supported. It stores very close
approximations of numeric values.

1.2345679

DOUBLE

This is an 8 byte double-precision floating-point number,
from 4.94065645841246544e-324d to
1.79769313486231570e+308d (positive or negative).
Scientific notation is not yet supported. It stores very close
approximations of numeric values.

1.2345678901234567

BINARY
This was introduced in Hive 0.8.0 and only supports CAST
to STRING and vice versa. 1011

BOOLEAN This is a TRUE or FALSE value. TRUE

STRING
This includes characters expressed with either single quotes
(') or double quotes ("). Hive uses C-style escaping within
the strings. The max size is around 2 G.

'Books' or "Books"

CHAR
This is available starting with Hive 0.13.0. Most UDF will
work for this type after Hive 0.14.0. The maximum length is
fixed at 255.

'US' or "US"

VARCHAR

This is available starting with Hive 0.12.0. Most UDF will
work for this type after Hive 0.14.0. The maximum length is
fixed at 65,355. If a string value being converted/assigned
to a varchar value exceeds the length specified, the string
is silently truncated.

'Books' or "Books"

DATE
This describes a specific year, month, and day in the format
of YYYY-MM-DD. It is available starting with Hive 0.12.0.
The range of dates is from 0000-01-01 to 9999-12-31.

2013-01-01

TIMESTAMP

This describes a specific year, month, day, hour, minute,
second, and millisecond in the format of YYYY-MM-DD
HH:MM:SS[.fff...]. It is available starting with Hive
0.8.0.

2013-01-01
12:00:01.345

Hive has three main complex types: ARRAY, MAP, and STRUCT. These data types are built on
top of the primitive data types. ARRAY and MAP are similar to that in Java. STRUCT is a
record type, which may contain a set of any type of fields. Complex types allow the nesting
of types. The details of complex types are as follows:

Data Definition and Description Chapter 3

[27]

Complex
type Description Example

ARRAY

This is a list of items of the same type, such as [val1,
val2, and so on]. You can access the value using
array_name[index], for example,
fruit[0]="apple". Index starts from 0.

["apple","orange","mango"]

MAP

This is a set of key-value pairs, such as {key1,
val1, key2, val2, and so on}. You can
access the value using map_name[key] for
example, fruit[1]="apple".

{1: "apple",2: "orange"}

STRUCT

This is a user-defined structure of any type of field,
such as {val1, val2, val3, and so on}. By default,
STRUCT field names will be col1, col2, and so on.
You can access the value using
structs_name.column_name, for example,
fruit.col1=1.

{1, "apple"}

NAMED
STRUCT

This is a user-defined structure of any number of
typed fields, such as {name1, val1, name2,
val2, and so on}. You can access the value
using structs_name.column_name, for
example, fruit.apple="gala".

{"apple":"gala","weight
kg":1}

UNION
This is a structure that has exactly any one of the
specified data types. It is available starting with Hive
0.7.0. It is not commonly used.

{2:["apple","orange"]}

For MAP, the type of keys and values are unified. However, STRUCT is
more flexible. STRUCT is more like a table, whereas MAP is more like an
ARRAY with a customized index.

The following is a short exercise for all the commonly-used data types. The details of the
CREATE, LOAD, and SELECT statements will be introduced in later chapters. Let's take a look
at the exercise:

 Prepare the data as follows:1.

 $vi employee.txt
 Michael|Montreal,Toronto|Male,30|DB:80|Product:Developer^DLead
 Will|Montreal|Male,35|Perl:85|Product:Lead,Test:Lead
 Shelley|New York|Female,27|Python:80|Test:Lead,COE:Architect
 Lucy|Vancouver|Female,57|Sales:89,HR:94|Sales:Lead

Data Definition and Description Chapter 3

[28]

Log in to beeline with the JDBC URL:2.

 $beeline -u "jdbc:hive2://localhost:10000/default"

Create a table using various data types (> indicates the beeline interactive mode):3.

 > CREATE TABLE employee (
 > name STRING,
 > work_place ARRAY<STRING>,
 > gender_age STRUCT<gender:STRING,age:INT>,
 > skills_score MAP<STRING,INT>,
 > depart_title MAP<STRING,ARRAY<STRING>>
 >)
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY '|'
 > COLLECTION ITEMS TERMINATED BY ','
 > MAP KEYS TERMINATED BY ':'
 > STORED AS TEXTFILE;
 No rows affected (0.149 seconds)

Verify that the table has been created:4.

 > !table employee
 +---------+------------+------------+--------------+---------+
 |TABLE_CAT|TABLE_SCHEMA| TABLE_NAME | TABLE_TYPE | REMARKS |
 +---------+------------+------------+--------------+---------+
 | |default | employee | MANAGED_TABLE| |
 +---------+------------+------------+--------------+---------+
 > !column employee
 -------------+-------------+-------------+-------------------+
 | TABLE_SCHEM | TABLE_NAME | COLUMN_NAME | TYPE_NAME |
 +-------------+-------------+-------------+------------------+
 | default | employee | name | STRING |
 | default | employee | work_place | array<string> |
 | default | employee | gender_age |
 struct<gender:string,age:int>|
 | default | employee | skills_score| map<string,int> |
 | default | employee | depart_title|
 map<string,array<string>> |
 +-------------+-------------+-------------+------------------+

Data Definition and Description Chapter 3

[29]

Load data into the table:5.

 > LOAD DATA INPATH '/tmp/hivedemo/data/employee.txt'
 > OVERWRITE INTO TABLE employee;
 No rows affected (1.023 seconds)

Query the whole array and each array element in the table:6.

 > SELECT work_place FROM employee;
 +----------------------+
 | work_place |
 +----------------------+
 | [Montreal, Toronto] |
 | [Montreal] |
 | [New York] |
 | [Vancouver] |
 +----------------------+
 4 rows selected (27.231 seconds)

 > SELECT
 > work_place[0] as col_1, work_place[1] as col_2,
 > work_place[2] as col_3
 > FROM employee;
 +------------+----------+--------+
 | col_1 | col_2 | col_3 |
 +------------+----------+--------+
 | Montreal | Toronto | |
 | Montreal | | |
 | New York | | |
 | Vancouver | | |
 ------------+----------+---------+
 4 rows selected (24.689 seconds)

Query the whole struct and each struct attribute in the table:7.

 > SELECT gender_age FROM employee;
 +------------------+
 | gender_age |
 +------------------+
 | [Male, 30] |
 | [Male, 35] |
 | [Female, 27] |
 | [Female, 57] |
 +------------------+
 4 rows selected (28.91 seconds)

 > SELECT gender_age.gender, gender_age.age FROM employee;
 +------------+------+

Data Definition and Description Chapter 3

[30]

 | gender | age |
 +------------+------+
 | Male | 30 |
 | Male | 35 |
 | Female | 27 |
 | Female | 57 |
 +------------+------+
 4 rows selected (26.663 seconds)

Query the whole map and each map element in the table:8.

 > SELECT skills_score FROM employee;
 +--------------------+
 | skills_score |
 +--------------------+
 | {DB=80} |
 | {Perl=85} |
 | {Python=80} |
 | {Sales=89, HR=94} |
 +--------------------+
 4 rows selected (32.659 seconds)

 > SELECT
 > name, skills_score['DB'] as DB, skills_score['Perl'] as Perl,
 > skills_score['Python'] as Python,
 > skills_score['Sales'] as Sales,
 > skills_score['HR'] as HR
 > FROM employee;
 +----------+-----+-------+---------+--------+-----+
 | name | db | perl | python | sales | hr |
 +----------+-----+-------+---------+--------+-----+
 | Michael | 80 | | | | |
 | Will | | 85 | | | |
 | Shelley | | | 80 | | |
 | Lucy | | | | 89 | 94 |
 +----------+-----+-------+---------+--------+-----+
 4 rows selected (24.669 seconds)

Note that the column name shown in the result or in the hive statement is
not case sensitive. It is always shown in lowercase letters.

Data Definition and Description Chapter 3

[31]

Query the composite type in the table:9.

 > SELECT depart_title FROM employee;
 +---------------------------------+
 | depart_title |
 +---------------------------------+
 | {Product=[Developer, Lead]} |
 | {Test=[Lead], Product=[Lead]} |
 | {Test=[Lead], COE=[Architect]} |
 | {Sales=[Lead]} |
 +---------------------------------+
 4 rows selected (30.583 seconds)

 > SELECT
 > name, depart_title['Product'] as Product, depart_title['Test']
 as Test,
 > depart_title['COE'] as COE, depart_title['Sales'] as Sales
 > FROM employee;
 +--------+--------------------+---------+-------------+------+
 | name | product | test | coe |sales |
 +--------+--------------------+---------+-------------+------+
 | Michael| [Developer, Lead] | | | |
 | Will | [Lead] | [Lead] | | |
 | Shelley| | [Lead] | [Architect] | |
 | Lucy | | | |[Lead]|
 +--------+--------------------+---------+-------------+------+
 4 rows selected (26.641 seconds)

 > SELECT
 > name, depart_title['Product'][0] as product_col0,
 > depart_title['Test'][0] as test_col0
 > FROM employee;
 +----------+---------------+------------+
 | name | product_col0 | test_col0 |
 +----------+---------------+------------+
 | Michael | Developer | |
 | Will | Lead | Lead |
 | Shelley | | Lead |
 | Lucy | | |
 +----------+---------------+------------+
 4 rows selected (26.659 seconds)

Data Definition and Description Chapter 3

[32]

The default delimiters in table-creation DDL are as follows:

Row Delimiter: This can be used with Ctrl + A or ^A (use
\001 when creating the table)
Collection Item Delimiter: This can be used with Ctrl + B or ^B
(\002)
Map Key Delimiter: This can be used with Ctrl + C or ^C (\003)

If the delimiter is overridden during the table creation, it only works
when used in the flat structure. This is still a limitation in Hive described
in Apache Jira Hive-365 (https:/ ​/ ​issues. ​apache. ​org/ ​jira/ ​browse/
HIVE- ​365). For nested types, the level of nesting determines the delimiter.
Using ARRAY of ARRAY as an example, the delimiters for the outer
ARRAY, as expected, are Ctrl + B characters, but the inner ARRAY delimiter
becomes Ctrl + C characters, which is the next delimiter in the list. In the
preceding example, the depart_title column, which is a MAP of ARRAY,
the MAP key delimiter is Ctrl + C, and the ARRAY delimiter is Ctrl + D.

Data type conversions
Similar to SQL, HQL supports both implicit and explicit type conversion. Primitive-type
conversion from a narrow to a wider type is known as implicit conversion. However, the
reverse conversion is not allowed. All the integral numeric types, FLOAT, and STRING can
be implicitly converted to DOUBLE, and TINYINT, SMALLINT, and INT can all be converted
to FLOAT. BOOLEAN types cannot be converted to any other type. There is a data type cross-
table describing the allowed implicit conversion between every two types, which can be
found at https:/​/​cwiki. ​apache. ​org/ ​confluence/ ​display/ ​Hive/ ​LanguageManual+Types.
Explicit-type conversion uses the CAST function with the CAST(value as TYPE) syntax.
For example, CAST('100' as INT) will convert the 100 string to the 100 integer value. If
the cast fails, such as CAST('INT' as INT), the function returns NULL.

In addition, the BINARY type can only first cast to STRING, then cast from STRING to other
types if needed.

https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://issues.apache.org/jira/browse/HIVE-365
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types

Data Definition and Description Chapter 3

[33]

Data Definition Language
Hive's Data Definition Language (DDL) is a subset of HQL statements that describe the
Hive data structure by creating, deleting, or altering schema objects such as databases,
tables, views, partitions, and buckets. Most DDL statements start with the CREATE, DROP, or
ALTER keywords. The syntax of HQL DDL is very similar to SQL DDL. In the next section,
we'll focus on the details of HQL DDL.

HQL uses -- before a single line of characters as comments, and it does
not support multiline comments until v2.3.0. After v2.3.0, we can use
bracketed single or multiline comments between /* and */.

Database
The database in Hive describes a collection of tables that are used for a similar purpose or
belong to the same groups. If the database is not specified, the default database is used
and uses /user/hive/warehouse in HDFS as its root directory. This path is configurable
by the hive.metastore.warehouse.dir property in hive-site.xml. Whenever a new
database is created, Hive creates a new directory for each database
under /user/hive/warehouse. For example, the myhivebook database is located at
/user/hive/datawarehouse/myhivebook.db. In addition, DATABASE has a name alias,
SCHEMA, meaning they are the same thing in HQL. The following is the major DDL for
databases operations:

Create the database/schema if it doesn't exist:1.

 > CREATE DATABASE myhivebook;
 > CREATE SCHEMA IF NOT EXISTS myhivebook;

Create the database with the location, comments, and metadata information:2.

 > CREATE DATABASE IF NOT EXISTS myhivebook
 > COMMENT 'hive database demo'
 > LOCATION '/hdfs/directory'
 > WITH DBPROPERTIES ('creator'='dayongd','date'='2018-05-01');

 -- To show the DDL use show create database since v2.1.0
 > SHOW CREATE DATABASE default;
 +--+
 | createdb_stmt |
 +--+

Data Definition and Description Chapter 3

[34]

 | CREATE DATABASE `default` |
 | COMMENT |
 | 'Default Hive database' |
 | LOCATION |
 | 'hdfs://localhost:9000/user/hive/warehouse' |
 +--+

Show and describe the database with wildcards:3.

 > SHOW DATABASES;
 +----------------+
 | database_name |
 +----------------+
 | default |
 +----------------+
 1 row selected (1.7 seconds)

 > SHOW DATABASES LIKE 'my.*';
 > DESCRIBE DATABASE default;
 +-------+----------------------+--------------------------------+
 |db_name| comment | location |
 +-------+----------------------+--------------------------------+
 |default|Default Hive database | hdfs://localhost:9000
 /user/hive/warehouse |
 +-------+----------------------+--------------------------------+
 1 row selected (1.352 seconds)

Switch to use one database or directly qualify the table name with the database4.
name:

 > USE myhivebook;
 > --SELECT * FROM myhivebook.table_name;

Show the current database:5.

 > SELECT current_database();
 +----------+
 | _c0 |
 +----------+
 | default |
 +----------+
 1 row selected (0.218 seconds)

Data Definition and Description Chapter 3

[35]

Drop the database:6.

 > DROP DATABASE IF EXISTS myhivebook;--failed when database is
 not empty
 > DROP DATABASE IF EXISTS myhivebook CASCADE;--drop database and
 tables

Hive databases/tables are directories/subdirectories in HDFS. In order to
remove the database directory, we need to remove the subdirectories (for
tables) first. By default, the database cannot be dropped if it is not empty,
unless the CASCADE option is specified. With this option, it drops all
tables in the database automatically before dropping the database.

Alter the database properties. The ALTER DATABASE statement can only apply7.
to dbproperties, owner, and location on the database. The other database
properties cannot be changed:

 > ALTER DATABASE myhivebook SET DBPROPERTIES ('edited-
 by'='Dayong');
 > ALTER DATABASE myhivebook SET OWNER user dayongd;
 > ALTER DATABASE myhivebook SET LOCATION '/tmp/data/myhivebook';

Since Hive v2.2.1, the ALTER DATABASE ... SET LOCATION statement
can be used to modify the database's location, but it does not move all
existing tables/partitions in the current database directory to the newly
specified location. It only changes the location for newly added tables
after the database is altered. This behavior is analogous to how changing a
table-directory does not move existing partitions to a different location.

The SHOW and DESC (or DESCRIBE) statements in Hive are used to show
the definition for most of the objects, such as tables and partitions. The
SHOW statement supports a wide range of Hive objects, such as tables,
tables' properties, table DDL, index, partitions, columns, functions, locks,
roles, configurations, transactions, and compactions. The DESC statement
supports a small range of Hive objects, such as databases, tables, views,
columns, and partitions. However, the DESC statement is able to provide
more detailed information combined with the EXTENDED or FORMATTED
keywords. In this book, there is no dedicated section to introduce
SHOW and DESC. Instead, we introduce them in line with other HQL
through the remaining chapters.

Data Definition and Description Chapter 3

[36]

Tables
The concept of a table in Hive is very similar to the table in the relational database. Each
table maps to a directory, which is under /user/hive/warehouse by default in HDFS. For
example, /user/hive/warehouse/employee is created for the employee table. All the
data in the table is stored in this hive user-manageable directory (full permission). This
kind of table is called an internal, or managed, table. When data is already stored in HDFS,
an external table can be created to describe the data. It is called external because the data
in the external table is specified in the LOCATION property rather than the default
warehouse directory. When keeping data in the internal tables, the table fully manages the
data in it. When an internal table is dropped, its data is deleted together. However, when
an external table is dropped, the data is not deleted. It is quite common to use external
tables for source read-only data or sharing the processed data to data consumers
giving customized HDFS locations. On the other hand, the internal table is often used as an
intermediate table during data processing, since it is quite powerful and flexible when
supported by HQL.

Table creation
The following are major DDLs for the internal and external table creation:

Show the data file content of employee.txt:1.

 $ vi /home/hadoop/employee.txt
 Michael|Montreal,Toronto|Male,30|DB:80|Product:Developer^DLead
 Will|Montreal|Male,35|Perl:85|Product:Lead,Test:Lead
 Shelley|New York|Female,27|Python:80|Test:Lead,COE:Architect
 Lucy|Vancouver|Female,57|Sales:89,HR:94|Sales:Lead

Create an internal table and load the data:2.

 > CREATE TABLE IF NOT EXISTS employee_internal (
 > name STRING COMMENT 'this is optinal column comments',
 > work_place ARRAY<STRING>,-- table column names are NOT case
 sensitive
 > gender_age STRUCT<gender:STRING,age:INT>,
 > skills_score MAP<STRING,INT>, -- columns names are lower case
 > depart_title MAP<STRING,ARRAY<STRING>>-- No "," for the last
 column
 >)

Data Definition and Description Chapter 3

[37]

 > COMMENT 'This is an internal table'-- This is optional table
 comments
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY '|' -- Symbol to seperate columns
 > COLLECTION ITEMS TERMINATED BY ','-- Seperate collection elements
 > MAP KEYS TERMINATED BY ':' -- Symbol to seperate keys and values
 > STORED as TEXTFILE; -- Table file format
 No rows affected (0.149 seconds)

 > LOAD DATA INPATH '/tmp/hivedemo/data/employee.txt'
 > OVERWRITE INTO TABLE employee_internal;

If the folder path does not exist in the LOCATION property, Hive will
create that folder. If there is another folder inside it, Hive will NOT report
errors when creating the table but querying the table.

Create an external table and load the data:3.

 > CREATE EXTERNAL TABLE employee_external (-- Use EXTERNAL keywords
 > name string,
 > work_place ARRAY<string>,
 > gender_age STRUCT<gender:string,age:int>,
 > skills_score MAP<string,int>,
 > depart_title MAP<STRING,ARRAY<STRING>>
 >)
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY '|'
 > COLLECTION ITEMS TERMINATED BY ','
 > MAP KEYS TERMINATED BY ':'
 > STORED as TEXTFILE
 > LOCATION '/user/dayongd/employee'; -- Specify data folder location
 No rows affected (1.332 seconds)

 > LOAD DATA INPATH '/tmp/hivedemo/data/employee.txt'
 > OVERWRITE INTO TABLE employee_external;

Since v2.1.0, Hive supports primary and foreign key constraints.
However, these constraints are not validated, so the upstream system
needs to ensure data integrity before it's loaded into Hive. The Hive
constraints may benefit some SQL tools to generate more efficient queries
with them, but they are not used very often.

Data Definition and Description Chapter 3

[38]

Hive also supports creating temporary tables. A temporary table is only visible to the
current user session. It's automatically deleted at the end of the session. The data of the
temporary table is stored in the user's scratch directory, such as /tmp/hive-<username>.
Therefore, make sure the folder is properly configured or secured when you have sensitive
data in temporary tables. Whenever a temporary table has the same name as a permanent
table, the temporary table will be chosen rather than the permanent table. A temporary
table does not support partitions and indexes. The following are three ways to create
temporary tables:

> CREATE TEMPORARY TABLE IF NOT EXISTS tmp_emp1 (
> name string,
> work_place ARRAY<string>,
> gender_age STRUCT<gender:string,age:int>,
> skills_score MAP<string,int>,
> depart_title MAP<STRING,ARRAY<STRING>>
>);
No rows affected (0.122 seconds)

> CREATE TEMPORARY TABLE tmp_emp2 as SELECT * FROM tmp_emp1;
> CREATE TEMPORARY TABLE tmp_emp3 like tmp_emp1;

Tables can also be created and populated by the results of a query in one statement, called
Create-Table-As-Select (CTAS). The table created by CTAS is not visible by other users
until all the query results are populated. CTAS has the following restrictions:

The table created cannot be a partitioned table
The table created cannot be an external table
The table created cannot be a list-bucketing table

A CTAS statement always triggers a yarn job to populate the data, although the SELECT *
statement itself does not trigger any yarn job.

CTAS can also be used with CTE, which stands for Common Table Expression. CTE is a
temporary result set derived from a simple select query specified in a WITH clause, followed
by the SELECT or INSERT statement to build the result set. The CTE is defined only within
the execution scope of a single statement. One or more CTEs can be used in a nested or
chained way with keywords, such as the SELECT, INSERT, CREATE TABLE AS SELECT,
or CREATE VIEW AS SELECT statements. Using CTE of HQL makes the query more
concise and clear than writing complex nested queries.

Data Definition and Description Chapter 3

[39]

The following are examples using CTAS and CTE for table creation:

Create a table with CTAS:1.

 > CREATE TABLE ctas_employee as SELECT * FROM employee_external;
 No rows affected (1.562 seconds)

Create a table with both CTAS and CTE:2.

 > CREATE TABLE cte_employee as
 > WITH r1 as (
 > SELECT name FROM r2 WHERE name = 'Michael'
 >),
 > r2 as (
 > SELECT name FROM employee WHERE gender_age.gender= 'Male'
 >),
 > r3 as (
 > SELECT name FROM employee WHERE gender_age.gender= 'Female'
 >)
 > SELECT * FROM r1
 > UNION ALL
 > SELECT * FROM r3;
 No rows affected (61.852 seconds)

 > SELECT * FROM cte_employee;
 +----------------------------+
 | cte_employee.name |
 +----------------------------+
 | Michael |
 | Shelley |
 | Lucy |
 +----------------------------+
 3 rows selected (0.091 seconds)

Use CTAS to create an empty table by copying the schema from another table. It3.
is empty because the where condition is false:

 > CREATE TABLE empty_ctas_employee as
 > SELECT * FROM employee_internal WHERE 1=2;
 No rows affected (213.356 seconds)

In another way, we can also use CREATE TABLE LIKE to create an empty table.4.
This is a faster way to copy the table schema since it does not trigger any jobs but
only copies metadata:

 > CREATE TABLE empty_like_employee LIKE employee_internal;
 No rows affected (0.115 seconds)

Data Definition and Description Chapter 3

[40]

Table description
Since we deal with tables most of the time, there are a few useful table-information display
commands, as follows:

Show tables with regular expression filters:1.

 > SHOW TABLES; -- Show all tables in database
 > SHOW TABLES '*sam*'; -- Show tables name contains "sam"
 > SHOW TABLES '*sam|lily*'; -- Show tables name contains "sam" or
 "lily"

List detailed table information for all tables matching the given regular2.
expression:

 >SHOW TABLE EXTENDED LIKE 'employee_int*';
 OK
 tableName:employee_internal
 owner:dayongd
 location:hdfs://localhost/user/hive/warehouse/employee_internal
 inputformat:org.apache.hadoop.mapred.TextInputFormat
 outputformat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyText
 OutputFormatcolumns:struct columns { i32 num}
 partitioned:false
 partitionColumns:
 totalNumberFiles:0
 totalFileSize:0
 maxFileSize:0
 minFileSize:0
 lastAccessTime:0
 lastUpdateTime:1274517075221

Show table-column information in two ways:3.

 > SHOW COLUMNS IN employee_internal;
 +---------------+
 | field |
 +---------------+
 | name |
 | work_place |
 | gender_age |
 | skills_score |
 | depart_title |
 +---------------+
 5 rows selected (0.101 seconds)

Data Definition and Description Chapter 3

[41]

 > DESC employee_internal;
 +--------------+-------------------------------+---------+
 | col_name | data_type | comment |
 +--------------+-------------------------------+---------+
 | name | string | |
 | work_place | array<string> | |
 | gender_age | struct<gender:string,age:int> | |
 | skills_score | map<string,int> | |
 | depart_title | map<string,array<string>> | |
 +---------------+------------------------------+---------+
 5 rows selected (0.127 seconds)

Show create-table DDL statements for the specified table:4.

 > SHOW CREATE TABLE employee_internal;
 +--+
 | createtab_stmt |
 +--+
 | CREATE TABLE `employee_internal`(|
 | `name` string, |
 | `work_place` array<string>, |
 | `gender_age` struct<gender:string,age:int>, |
 | `skills_score` map<string,int>, |
 | `depart_title` map<string,array<string>>) |
 | COMMENT 'this is an internal table' |
 | ROW FORMAT SERDE |
 | 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' |
 | WITH SERDEPROPERTIES (|
 | 'colelction.delim'=',', |
 | 'field.delim'='|', |
 | 'mapkey.delim'=':', |
 | 'serialization.format'='|') |
 | STORED as INPUTFORMAT |
 | 'org.apache.hadoop.mapred.TextInputFormat' |
 | OUTPUTFORMAT |
 | 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' |
 | LOCATION |
 | 'hdfs://localhost:9000/user/hive/warehouse/employee_internal'|
 | TBLPROPERTIES (|
 | 'transient_lastDdlTime'='1523108773') |
 +--+
 22 rows selected (0.191 seconds)

Show table properties for the specified table:5.

 > SHOW TBLPROPERTIES employee_internal;
 +-----------------------+---------------------------+
 | prpt_name | prpt_value |

Data Definition and Description Chapter 3

[42]

 +-----------------------+---------------------------+
 | comment | this is an internal table |
 | numFiles | 1 |
 | numRows | 0 |
 | rawDataSize | 0 |
 | totalSize | 227 |
 | transient_lastDdlTime | 1523108773 |
 +-----------------------+---------------------------+
 6 rows selected (0.095 seconds)

Table cleaning
Sometimes, we may need to clean up the table, either by deleting only the records or the
table along with the records. There are two statements in HQL to do such cleaning. One is
the DROP TABLE statement, and the other is TRUNCATE TABLE. The drop-table statement on
an internal table removes the table completely and moves data to .trash in the current
user directory, if the trash setting is configured. The drop-table statement on an external
table will only remove the table definition, but keeps data:

> DROP TABLE IF EXISTS empty_ctas_employee;
No rows affected (0.283 seconds)

On the other hand, the truncate table statement only removes data from the table. The table
still exists, but is empty. Note, truncate table can only apply to an internal table:

> TRUNCATE TABLE cte_employee;-- Only apply to internal tables
No rows affected (0.093 seconds)
> SELECT name FROM cte_employee;--Other hand, the truncate t
-- Not data left, but empty table exists
+--------------------+
| cte_employee.name |
+--------------------+
+--------------------+
No rows selected (0.059 seconds)

Table alteration
Once a table is created, we can still modify its metadata, such as adding new columns and
changing the column's data type. In HQL, we use the ALTER command to modify the table's
metadata. However, alter table is not able to update the data accordingly. We should make
sure the actual data conforms to the metadata definition manually, otherwise the query will
return nothing in expectation.

Data Definition and Description Chapter 3

[43]

The following are examples for altering tables in HQL:

Rename a table with the ALTER statement. This is quite often used as data1.
backup:

 > ALTER TABLE cte_employee RENAME TO cte_employee_backup;
 No rows affected (0.237 seconds)

Change the table properties with TBLPROPERTIES:2.

 > ALTER TABLE c_employee SET TBLPROPERTIES
 ('comment'='New comments');
 No rows affected (0.239 seconds)

Change the table's row format and SerDe (SerDe is introduced in Chapter 8,3.
Extensibility Considerations) with SERDEPROPERTIES:

 > ALTER TABLE employee_internal SET SERDEPROPERTIES
 ('field.delim' = '$');
 No rows affected (0.148 seconds)

Change the table's file format with FILEFORMAT:4.

 > ALTER TABLE c_employee SET FILEFORMAT RCFILE;
 No rows affected (0.235 seconds)

Change the table's location, a full URI of HDFS, with LOCATION:5.

 > ALTER TABLE c_employee SET LOCATION
 'hdfs://localhost:9000/tmp/employee';
 No rows affected (0.169 seconds)

Enable/Disable the table's protection; NO_DROP or OFFLINE. NO_DROP prevents a6.
table from being dropped, while OFFLINE prevents data (not metadata) from
being queried in a table:

 > ALTER TABLE c_employee ENABLE NO_DROP;
 > ALTER TABLE c_employee DISABLE NO_DROP;
 > ALTER TABLE c_employee ENABLE OFFLINE;
 > ALTER TABLE c_employee DISABLE OFFLINE;

Enable concatenation in an RCFile, or ORC table if it has many small files:7.

 > ALTER TABLE c_employee SET FILEFORMAT ORC; -- Convert to ORC
 No rows affected (0.160 seconds)

 > ALTER TABLE c_employee CONCATENATE;

Data Definition and Description Chapter 3

[44]

 No rows affected (0.165 seconds)

Since v0.8.0, RCFile is added to support fast block-level merging of small
RCFiles using the CONCATENATE option. Since v0.14.0, ORC file is added
to support the fast stripe-level merging of small ORC files using the
CONCATENATE option. Other file formats are not supported yet. RCfiles
merge at the block level, while ORC files merge at the stripe level, thereby
avoiding the overhead of decompressing and decoding the data.

Change the column's data type, position (with AFTER or FIRST), and comment:8.

 > DESC employee_internal; -- Check column type before alter
 +----------------+-------------------------------+----------+
 | col_name | data_type | comment |
 +----------------+-------------------------------+----------+
 | employee_name | string | |
 | work_place | array<string> | |
 | gender_age | struct<gender:string,age:int> | |
 | skills_score | map<string,int> | |
 | depart_title | map<string,array<string>> | |
 +----------------+-------------------------------+----------+
 5 rows selected (0.119 seconds)

 > ALTER TABLE employee_internal
 > CHANGE name employee_name string AFTER gender_age;
 No rows affected (0.23 seconds)

 > DESC employee_internal; -- Verify type and order changes above
 +----------------+-------------------------------+----------+
 | col_name | data_type | comment |
 +----------------+-------------------------------+----------+
 | work_place | array<string> | |
 | gender_age | struct<gender:string,age:int> | |
 | employee_name | string | |
 | skills_score | map<string,int> | |
 | depart_title | map<string,array<string>> | |
 +----------------+-------------------------------+----------+
 5 rows selected (0.214 seconds)

 > ALTER TABLE employee_internal
 > CHANGE employee_name name string COMMENT 'updated' FIRST;
 No rows affected (0.238 seconds)
 > DESC employee_internal; -- Verify changes by FRIST keywords
 +---------------+-------------------------------+----------+
 | col_name | data_type | comment |
 +---------------+-------------------------------+----------+

Data Definition and Description Chapter 3

[45]

 | name | string | updated |
 | work_place | array<string> | |
 | gender_age | struct<gender:string,age:int> | |
 | skills_score | map<string,int> | |
 | depart_title | map<string,array<string>> | |
 +---------------+-------------------------------+----------+
 5 rows selected (0.119 seconds)

Add new columns to a table:9.

 > ALTER TABLE c_employee ADD COLUMNS (work string);
 No rows affected (0.184 seconds)

 > DESC c_employee;
 +-----------+------------+----------+
 | col_name | data_type | comment |
 +-----------+------------+----------+
 | name | string | |
 | work | string | |
 +-----------+------------+----------+
 2 rows selected (0.115 seconds)

Replace all columns in a table using the new columns specified:10.

 > ALTER TABLE c_employee REPLACE COLUMNS (name string);
 No rows affected (0.132 seconds)

 > DESC c_employee; -- Verify the changes
 +-----------+------------+----------+
 | col_name | data_type | comment |
 +-----------+------------+----------+
 | name | string | |
 +-----------+------------+----------+
 1 row selected (0.129 seconds)

Partitions
By default, a simple HQL query scans the whole table. This slows down the performance
when querying a big table. This issue could be resolved by creating partitions, which are
very similar to what's in the RDBMS. In Hive, each partition corresponds to a predefined
partition column(s), which maps to subdirectories in the table's directory in HDFS. When
the table gets queried, only the required partitions (directory) of data in the table are being
read, so the I/O and time of the query is greatly reduced. Using partition is a very easy and
effective way to improve performance in Hive.

Data Definition and Description Chapter 3

[46]

The following is an example of partition creation in HQL:

> CREATE TABLE employee_partitioned (
> name STRING,
> work_place ARRAY<STRING>,
> gender_age STRUCT<gender:STRING,age:INT>,
> skills_score MAP<STRING,INT>,
> depart_title MAP<STRING,ARRAY<STRING>>
-- This is regular column
>)
> PARTITIONED BY (year INT, month INT)
-- Use lower case partition column
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY '|'
> COLLECTION ITEMS TERMINATED BY ','
> MAP KEYS TERMINATED BY ':';
No rows affected (0.293 seconds)

> DESC employee_partitioned;
-- Partition columns are listed twice
+-------------------------+-------------------------------+---------+
| col_name | data_type | comment |
+-------------------------+-------------------------------+---------+
| name | string | |
| work_place | array<string> | |
| gender_age | struct<gender:string,age:int> | |
| skills_score | map<string,int> | |
| depart_title | map<string,array<string>> | |
| year | int | |
| month | int | |
| | NULL | NULL |
| # Partition Information | NULL | NULL |
| # col_name | data_type | comment |
| | NULL | NULL |
| year | int | |
| month | int | |
+-------------------------+-------------------------------+---------+
13 rows selected (0.38 seconds)

> SHOW PARTITIONS employee_partitioned; -- Check partitions
+------------+
| partition |
+------------+
+------------+
 No rows selected (0.177 seconds)

Data Definition and Description Chapter 3

[47]

From the preceding result, we can see that the partition is not enabled automatically. We
have to use the ALTER TABLE ADD PARTITION statement to add static partitions to a table.
Here, static means the partition is being added manually. This command changes the
table's metadata but does not load data. If the data does not exist in the partition's location,
queries will not return any results. To drop the partition metadata, use the ALTER TABLE
... DROP PARTITION statement. For external tables, ALTER does not change data but
metadata, drop partition will not drop data inside the partition. In order to remove data, we
can use the hdfs dfs -rm command to remove data from HDFS for the external table. For
internal tables, ALTER TABLE ... DROP PARTITION will remove both partition and data.
The following are more examples of common operations on partition tables:

Perform partition operations, such as add, remove, and rename partitions:1.

 > ALTER TABLE employee_partitioned ADD -- Add multiple static
 partitions
 > PARTITION (year=2018, month=11) PARTITION (year=2018,
 month=12);
 No rows affected (0.248 seconds)

 > SHOW PARTITIONS employee_partitioned;
 +---------------------+
 | partition |
 +---------------------+
 | year=2018/month=11 |
 | year=2018/month=12 |
 +---------------------+
 2 rows selected (0.108 seconds)

 -- Drop partition with PURGE at the end will remove completely
 -- Drop partition will NOT remove data for external table
 -- Drop partition will remove data with partition for internal table
 > ALTER TABLE employee_partitioned
 > DROP IF EXISTS PARTITION (year=2018, month=11);
 > SHOW PARTITIONS employee_partitioned;
 +---------------------+
 | partition |
 +---------------------+
 | year=2018/month=12 |
 +---------------------+
 1 row selected (0.107 seconds)

 > ALTER TABLE employee_partitioned
 > DROP IF EXISTS PARTITION (year=2017); -- Drop all partitions in
 2017
 > ALTER TABLE employee_partitioned
 > DROP IF EXISTS PARTITION (month=9); -- Drop all month is 9

Data Definition and Description Chapter 3

[48]

 > ALTER TABLE employee_partitioned -- Rename exisiting partition
 values
 > PARTITION (year=2018, month=12)
 > RENAME TO PARTITION (year=2018,month=10);
 No rows affected (0.274 seconds)

 > SHOW PARTITIONS employee_partitioned;
 +---------------------+
 | partition |
 +---------------------+
 | year=2018/month=10 |
 +---------------------+
 2 rows selected (0.274 seconds)

 -- Below is failed
 -- Because all partition columns should be specified for partition
 rename
 > --ALTER TABLE employee_partitioned PARTITION (year=2018)
 > --RENAME TO PARTITION (year=2017);

Load data into a table partition once the partition is created:2.

 > LOAD DATA INPATH '/tmp/hivedemo/data/employee.txt'
 > OVERWRITE INTO TABLE employee_partitioned
 > PARTITION (year=2018, month=12);
 No rows affected (0.96 seconds)

 > SELECT name, year, month FROM employee_partitioned; -- Verify data
 loaded
 +----------+-------+--------+
 | name | year | month |
 +----------+-------+--------+
 | Michael | 2018 | 12 |
 | Will | 2018 | 12 |
 | Shelley | 2018 | 12 |
 | Lucy | 2018 | 12 |
 +----------+-------+--------+
 4 rows selected (37.451 seconds)

To avoid manually adding static partitions, dynamic partition insert (or multipartition
insert) is designed for dynamically determining which partitions should be added and
populated while scanning the input table. This part is introduced in more detail for
the INSERT statement in Chapter 5, Data Manipulation. To populate data in the partition,
we can use the LOAD or INSERT statements. The statement only loads the data in the
specified partition lists.

Data Definition and Description Chapter 3

[49]

Although partition columns map to directory names rather than data, we can query or
select them like regular columns in HQL to narrow down the result set.

The use case for static and dynamic partition is quite different. Static
partition is often used for an external table containing data newly landed
in HDFS. In this case, it often uses the date, such as yyyyMMdd, as the
partition column. Whenever the data of the new day arrives, we add the
day-specific static partition (by script) to the table, and then the newly
arrived data is queryable from the table immediately. For dynamic
partition, it is often being used for data transformation between internal
tables with partition columns derived from data itself; see Chapter 5, Data
Manipulation.

Remove data from the partition. Note, removing data will not remove the3.
partition information. In order to do a complete data cleaning, we can drop the
partition described in step 1 after the data is removed:

 -- For internal table, we use truncate
 > TRUNCATE TABLE employee_partitioned PARTITION
 (year=2018,month=12);

 -- For external table, we have to use hdfs command
 > dfs -rm -r -f /user/dayongd/employee_partitioned;

Add regular columns to a partition table. Note, we CANNOT add new columns as4.
partition columns. There are two options when adding/removing columns from a
partition table, CASCADE and RESTRICT. The commonly used CASCADE option
cascades the same change to all the partitions in the table.
However, RESTRICT is the default, limiting column changes only to table
metadata, which means the changes will be only applied to new partitions rather
than existing partitions:

 > ALTER TABLE employee_partitioned ADD COLUMNS (work string)
 CASCADE;

We can change the existing partition column data type:5.

 > ALTER TABLE employee_partitioned PARTITION COLUMN(year string);
 No rows affected (0.274 seconds)

 > DESC employee_partitioned; -- Verify the changes
 +-------------------------+-------------------------------+---------+

Data Definition and Description Chapter 3

[50]

 | col_name | data_type | comment |
 +-------------------------+-------------------------------+---------+
 | name | string | |
 | work_place | array<string> | |
 | gender_age | struct<gender:string,age:int> | |
 | skills_score | map<string,int> | |
 | depart_title | map<string,array<string>> | |
 | work | string | |
 | year | int | |
 | month | int | |
 | | NULL | NULL |
 | # Partition Information | NULL | NULL |
 | # col_name | data_type | comment |
 | | NULL | NULL |
 | year | string | |
 | month | int | |
 +-------------------------+-------------------------------+---------+
 13 rows selected (0.38 seconds)

Right now, we can only change the partition column data type. We cannot
add/remove a column from partition columns. If we have to change the
partition design, we must back up and recreate the table, and then migrate
the data. In addition, we are NOT able to change a non-partition table to a
partition table directly.

Changing the partition's other properties in terms of file format, location,6.
protections, and concatenation have the same syntax to alter the table statement:

 > ALTER TABLE employee_partitioned PARTITION (year=2018)
 > SET FILEFORMAT ORC;
 > ALTER TABLE employee_partitioned PARTITION (year=2018)
 > SET LOCATION '/tmp/data';
 > ALTER TABLE employee_partitioned PARTITION (year=2018) ENABLE
 NO_DROP;
 > ALTER TABLE employee_partitioned PARTITION (year=2018) ENABLE
 OFFLINE;
 > ALTER TABLE employee_partitioned PARTITION (year=2018) DISABLE
 NO_DROP;
 > ALTER TABLE employee_partitioned PARTITION (year=2018) DISABLE
 OFFLINE;
 > ALTER TABLE employee_partitioned PARTITION (year=2018) CONCATENATE;

Data Definition and Description Chapter 3

[51]

Buckets
Besides partition, the bucket is another technique to cluster datasets into more manageable
parts to optimize query performance. Different from a partition, a bucket corresponds to
segments of files in HDFS. For example, the employee_partitioned table from the
previous section uses year and month as the top-level partition. If there is a further request
to use employee_id as the third level of partition, it creates many partition directories. For
instance, we can bucket the employee_partitioned table using employee_id as a bucket
column. The value of this column will be hashed by a user-defined number of buckets. The
records with the same employee_id will always be stored in the same bucket (segment of
files). The bucket columns are defined by CLUSTERED BY keywords. It is quite different
from partition columns since partition columns refer to the directory, while bucket columns
have to be actual table data columns. By using buckets, an HQL query can easily and
efficiently do sampling (see Chapter 6, Data Aggregation and Sampling), bucket-side joins,
and map-side joins (see Chapter 4, Data Correlation and Scope). An example of creating a
bucket table is shown as follows:

--Prepare table employee_id and its dataset to populate bucket table
> CREATE TABLE employee_id (
> name STRING,
> employee_id INT,
> work_place ARRAY<STRING>,
> gender_age STRUCT<gender:STRING,age:INT>,
> skills_score MAP<STRING,INT>,
> depart_title MAP<STRING,ARRAY<STRING>>
>)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY '|'
> COLLECTION ITEMS TERMINATED BY ','
> MAP KEYS TERMINATED BY ':';
No rows affected (0.101 seconds)

> LOAD DATA INPATH
> '/tmp/hivedemo/data/employee_id.txt'
> OVERWRITE INTO TABLE employee_id
No rows affected (0.112 seconds)

--Create the buckets table
> CREATE TABLE employee_id_buckets (
> name STRING,
> employee_id INT, -- Use this table column as bucket column later
> work_place ARRAY<STRING>,
> gender_age STRUCT<gender:string,age:int>,
> skills_score MAP<string,int>,

Data Definition and Description Chapter 3

[52]

> depart_title MAP<string,ARRAY<string >>
>)
> CLUSTERED BY (employee_id) INTO 2 BUCKETS -- Support more columns
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY '|'
> COLLECTION ITEMS TERMINATED BY ','
> MAP KEYS TERMINATED BY ':';
No rows affected (0.104 seconds)

To define the proper number of buckets, we should avoid having too
much or too little data in each bucket. A better choice is somewhere near
two blocks of data, such as 512 MB of data in each bucket. As a best
practice, use 2N as the number of buckets.

Bucketing has a close dependency on the data-loading process. To properly load data into a
bucket table, we need to either set the maximum number of reducers to the same number of
buckets specified in the table creation (for example, 2), or enable enforce bucketing
(recommended), as follows:

> set map.reduce.tasks = 2;
No rows affected (0.026 seconds)

> set hive.enforce.bucketing = true; -- This is recommended
No rows affected (0.002 seconds)

To populate the data to a bucket table, we cannot use the LOAD DATA statement, because
it does not verify the data against the metadata. Instead, INSERT should be used to
populate the bucket table all the time:

> INSERT OVERWRITE TABLE employee_id_buckets SELECT * FROM employee_id;
No rows affected (75.468 seconds)

-- Verify the buckets in the HDFS from shell
$hdfs dfs -ls /user/hive/warehouse/employee_id_buckets
Found 2 items
-rwxrwxrwx 1 hive hive 900 2018-07-02 10:54
/user/hive/warehouse/employee_id_buckets/000000_0
-rwxrwxrwx 1 hive hive 582 2018-07-02 10:54
/user/hive/warehouse/employee_id_buckets/000001_0

Data Definition and Description Chapter 3

[53]

Views
Views are logical data structures that can be used to simplify queries by hiding the
complexities, such as joins, subqueries, and filters. It is called logical because views are only
defined in metastore without the footprint in HDFS. Unlike what's in the relational
database, views in HQL do not store data or get materialized. Once the view is created, its
schema is frozen immediately. Subsequent changes to the underlying tables (for example,
adding a column) will not be reflected in the view's schema. If an underlying table is
dropped or changed, subsequent attempts to query the invalid view will fail. In addition,
views are read-only and may not be used as the target of the LOAD/INSERT/ALTER
statements.

The following is an example of a view creation statement:

> CREATE VIEW IF NOT EXISTS employee_skills
> AS
> SELECT
> name, skills_score['DB'] as DB,
> skills_score['Perl'] as Perl,
> skills_score['Python'] as Python,
> skills_score['Sales'] as Sales,
> skills_score['HR'] as HR
> FROM employee;
No rows affected (0.253 seconds)

When creating views, there is no yarn job triggered since this is only a metadata change.
However, the job will be triggered when querying the view. To check the view definition,
we can use the SHOW statement. When modifying the view definition, we can use the ALTER
VIEW statement. The following are some examples to show, check, and modify the view:

Show only views in the database. This was introduced in Hive v2.2.0. We can use1.
the SHOW TABLES statement in the earlier version of Hive instead:

 > SHOW VIEWS;
 > SHOW VIEWS 'employee_*';
 No rows affected (0.19 seconds)

Show the view's definition:2.

 > DESC FORMATTED employee_skills;
 > SHOW CREATE TABLE employee_skills; -- this is recommended
 No rows affected (0.19 seconds)

Data Definition and Description Chapter 3

[54]

Alter the views' properties:3.

 > ALTER VIEW employee_skills SET TBLPROPERTIES ('comment'='A
 view');
 No rows affected (0.19 seconds)

Redefine the views:4.

 > ALTER VIEW employee_skills as SELECT * from employee;
 No rows affected (0.17 seconds)

Drop the views:5.

 > DROP VIEW employee_skills;
 No rows affected (0.156 seconds)

There is a special view in HQL, called LateralView. It is usually used with user-defined
table-generating functions in Hive, such as explode(), for data normalization or
processing JSON data. LateralView first applies the table-generation function to the data,
and then joins the function's input and output together. See the following examples:

> SELECT name, workplace FROM employee_internal

> LATERAL VIEW explode(work_place) wp as workplace;
+---------+-----------+
| name | workplace |
+---------+-----------+
| Michael | Montreal |
| Michael | Toronto |
| Will | Montreal |
| Shelley | Montreal |
| Lucy | Vancouver |
+---------+-----------+
5 rows selected (6.693 seconds)

By adding OUTER after LATERAL VIEW, we can ensure we generate the result even if the
table-generating function's output is NULL:

> SELECT name, workplace FROM employee_internal
> LATERAL VIEW explode(split(null, ',')) wp as workplace;
+-------+------------+
| name | workplace |
+-------+------------+
+-------+------------+
No rows selected (5.499 seconds)

> SELECT name, workplace FROM employee_internal

Data Definition and Description Chapter 3

[55]

> LATERAL VIEW OUTER explode(split(null, ',')) wp as workplace;
+---------+-----------+
| name | workplace |
+---------+-----------+
| Michael | NULL |
| Michael | NULL |
| Will | NULL |
| Shelley | NULL |
| Lucy | NULL |
+---------+-----------+
5 rows selected (5.745 seconds)

Summary
In this chapter, we learned how to define and use various data types in Hive. We looked at
how to create, alter, and drop tables, partitions, and views. We also covered how to use
external tables, internal tables, partitions, buckets, and views.

In the next chapter, we will dive into the details of querying data in Hive.

4
Data Correlation and Scope

This chapter is about how to discover data by projecting it, linking it, and limiting data
ranges or scopes. The chapter mainly covers the syntax and usage of the SELECT, WHERE,
LIMIT, JOIN, and UNION/UNION ALL statements to operate on datasets.

In this chapter, we will cover the following topics:

Projecting data with SELECT
Filtering data with conditions such as WHERE and LIMIT
Linking data with JOIN
Combining data with UNION

Project data with SELECT
The most common use case for Hive is to query data in Hadoop. To achieve this, we need to
write and execute a SELECT statement. The typical work done by the SELECT statement is
to project the whole row (with SELECT *) or specified columns (with SELECT column1,
column2, ...) from a table, with or without conditions.Most simple SELECT statements
will not trigger a Yarn job. Instead, a dump task is created just for dumping the data, such
as the hdfs dfs -cat command. The SELECT statement is quite often used with the FROM
and DISTINCT keywords. A FROM keyword followed by a table is where SELECT projects
data. The DISTINCT keyword used after SELECT ensures only unique rows or combination
of columns are returned from the table. In addition, SELECT also supports columns
combined with user-defined functions, IF(), or a CASE WHEN THEN ELSE END statement,
and regular expressions. The following are examples of projecting data with
a SELECT statement:

Query the whole row or specific columns in the table:1.

 > SELECT * FROM employee; -- Project the whole row

Data Correlation and Scope Chapter 4

[57]

 > SELECT name FROM employee; -- Project specified columns
 +----------+
 | name |
 +----------+
 | Michael |
 | Will |
 | Shelley |
 | Lucy |
 +----------+
 4 rows selected (0.452 seconds)

 -- List all columns match java regular expression
 > SET hive.support.quoted.identifiers = none; -- Enable this
 > SELECT `^work.*` FROM employee; -- All columns start with work
 +------------------------+
 | employee.work_place |
 +------------------------+
 | ["Montreal","Toronto"] |
 | ["Montreal"] |
 | ["New York"] |
 | ["Vancouver"] |
 +------------------------+
 4 rows selected (0.141 seconds)

Select distinct columns listed from a table:2.

 > SELECT DISTINCT name, work_place FROM employee;
 +---------+------------------------+
 | name | work_place |
 +---------+------------------------+
 | Lucy | ["Vancouver"] |
 | Michael | ["Montreal","Toronto"] |
 | Shelley | ["New York"] |
 | Will | ["Montreal"] |
 +---------+------------------------+
 4 rows selected (35.962 seconds)

Select columns with IF or CASE WHEN functions:3.

 > SELECT
 > CASE WHEN gender_age.gender = 'Female' THEN 'Ms.'
 > ELSE 'Mr.' END as title,
 > name,
 > IF(array_contains(work_place, 'New York'), 'US', 'CA') as
 country
 > FROM employee;
 +-------+---------+---------+
 | title | name | country |

Data Correlation and Scope Chapter 4

[58]

 +-------+---------+---------+
 | Mr. | Michael | CA |
 | Mr. | Will | CA |
 | Ms. | Shelley | US |
 | Ms. | Lucy | CA |
 +-------+---------+---------+
 4 rows selected (0.585 seconds)

Multiple SELECT statements can work together to build a complex query using nested
queries or CTE. A nested query, which is also called a subquery, is a query projecting data
from the result of another query. Nested queries can be rewritten using CTE (mentioned in
Chapter 3, Data Definition and Description) with the WITH and AS keywords. When using
nested queries, an alias should be given for the inner query (see t1 in the following
example), or else Hive will report exceptions. The following are a few examples of using
nested queries in HQL:

A nested query example with the mandatory alias:1.

 > SELECT
 > name, gender_age.gender as gender
 > FROM (
 > SELECT * FROM employee WHERE gender_age.gender = 'Male'
 >) t1; -- t1 here is mandatory
 +----------+----------+
 | name | gender |
 +----------+----------+
 | Michael | Male |
 | Will | Male |
 +----------+----------+
 2 rows selected (48.198 seconds)

A nested query can be rewritten with CTE as follows. This is the recommended2.
way of writing a complex single HQL query:

 > WITH t1 as (
 > SELECT * FROM employee WHERE gender_age.gender = 'Male'
 >)
 > SELECT name, gender_age.gender as gender
 > FROM t1;
 +----------+----------+
 | name | gender |
 +----------+----------+
 | Michael | Male |
 | Will | Male |
 +----------+----------+
 2 rows selected (38.706 seconds)

Data Correlation and Scope Chapter 4

[59]

In addition, a special SELECT followed by a constant expression can work without the FROM
table clause. It returns the result of the expression. This is equivalent to querying a
dummy table with one dummy record:

> SELECT concat('1','+','3','=',cast((1 + 3) as string)) as res;
+-------+
| res |
+-------+
| 1+3=4 |
+-------+
1 row selected (0.109 seconds)

Filtering data with conditions
It is quite common to narrow down the result set by using a condition clause, such as
LIMIT, WHERE, IN/NOT IN, and EXISTS/NOT EXISTS. The LIMIT keyword limits the
specified number of rows returned randomly. Compared with LIMIT, WHERE is a more
powerful and generic condition clause to limit the returned result set by expressions,
functions, and nested queries as in the following examples:

> SELECT name FROM employee LIMIT 2;
+----------+
| name |
+----------+
| Lucy |
| Michael |
+----------+
2 rows selected (71.125 seconds)

> SELECT name, work_place FROM employee WHERE name = 'Michael';
+----------+------------------------+
| name | work_place |
+----------+------------------------+
| Michael | ["Montreal","Toronto"] |
+----------+------------------------+
1 row selected (38.107 seconds)

-- All the conditions can use together and use after WHERE
> SELECT name, work_place FROM employee WHERE name = 'Michael' LIMIT 1;
+----------+------------------------+
| name | work_place |
+----------+------------------------+
| Michael | ["Montreal","Toronto"] |
+----------+------------------------+

Data Correlation and Scope Chapter 4

[60]

1 row selected (39.103 seconds)

IN/NOT IN is used as an expression to check whether values belong to a set specified by IN
or NOT IN. With effect from Hive v2.1.0, IN and NOT IN statements support more than one
column:

> SELECT name FROM employee WHERE gender_age.age in (27, 30);
+----------+
| name |
+----------+
| Michael |
| Shelley |
+----------+
2 rows selected (0.3 seconds)

-- With multiple columns support after v2.1.0
> SELECT
> name, gender_age
> FROM employee
> WHERE (gender_age.gender, gender_age.age) IN
> (('Female', 27), ('Male', 27 + 3)); -- Also support expression
+---------+------------------------------+
| name | gender_age |
+---------+------------------------------+
| Michael | {"gender":"Male","age":30} |
| Shelley | {"gender":"Female","age":27} |
+---------+------------------------------+
2 rows selected (0.282 seconds)

In addition, filtering data can also use a subquery in the WHERE clause with IN/NOT
IN and EXISTS/NOT EXISTS. A subquery that uses EXISTS or NOT EXISTS must refer to
both inner and outer expressions:

> SELECT
> name, gender_age.gender as gender
> FROM employee
> WHERE name IN
> (SELECT name FROM employee WHERE gender_age.gender = 'Male');
+----------+----------+
| name | gender |
+----------+----------+
| Michael | Male |
| Will | Male |
+----------+----------+
2 rows selected (54.644 seconds)

> SELECT

Data Correlation and Scope Chapter 4

[61]

> name, gender_age.gender as gender
> FROM employee a
> WHERE EXISTS (
> SELECT *
> FROM employee b
> WHERE
> a.gender_age.gender = b.gender_age.gender AND
b.gender_age.gender = 'Male'
>); -- This likes join table a and b with column gender
+----------+----------+
| name | gender |
+----------+----------+
| Michael | Male |
| Will | Male |
+----------+----------+
 2 rows selected (69.48 seconds)

There are additional restrictions for subqueries used in WHERE clauses:

Subqueries can only appear on the right-hand side of WHERE clauses
Nested subqueries are not allowed
IN/NOT IN in subqueries only support the use of a single column, although they
support more in regular expressions

Linking data with JOIN
JOIN is used to link rows from two or more tables together. Hive supports most
SQL JOIN operations, such as INNER JOIN and OUTER JOIN. In addition, HQL supports
some special joins, such as MapJoin and Semi-Join too. In its earlier version, Hive only
supported equal join. After v2.2.0, unequal join is also supported. However, you should be
more careful when using unequal join unless you know what is expected, since unequal
join is likely to return many rows by producing a Cartesian product of joined tables. When
you want to restrict the output of a join, you should apply a WHERE clause after join as JOIN
occurs before the WHERE clause. If possible, push filter conditions on the join conditions
rather than where conditions to have data filtered earlier. What's more, all types of
left/right joins are not commutative and always left/right associative, while INNER and
FULL OUTER JOINS are both commutative and associative.

Data Correlation and Scope Chapter 4

[62]

INNER JOIN
INNER JOIN or JOIN returns rows meeting the join conditions from both sides of joined
tables. The JOIN keyword can also be omitted by comma-separated table names; this is
called an implicit join. Here are examples of the HQL JOIN operation:

First, prepare a table to join with and load data to it:1.

 > CREATE TABLE IF NOT EXISTS employee_hr (
 > name string,
 > employee_id int,
 > sin_number string,
 > start_date date
 >)
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY '|';
 No rows affected (1.732 seconds)

 > LOAD DATA INPATH '/tmp/hivedemo/data/employee_hr.txt'
 > OVERWRITE INTO TABLE employee_hr;
 No rows affected (0.635 seconds)

Perform an INNER JOIN between two tables with equal and unequal join2.
conditions, along with complex expressions as well as a post join WHERE
condition. Usually, we need to add a table name or table alias before columns in
the join condition, although Hive always tries to resolve them:

 > SELECT
 > emp.name, emph.sin_number
 > FROM employee emp
 > JOIN employee_hr emph ON emp.name = emph.name; -- Equal Join
 +-----------+------------------+
 | emp.name | emph.sin_number |
 +-----------+------------------+
 | Michael | 547-968-091 |
 | Will | 527-948-090 |
 | Lucy | 577-928-094 |
 +-----------+------------------+
 3 rows selected (71.083 seconds)

 > SELECT
 > emp.name, emph.sin_number
 > FROM employee emp -- Unequal join supported since v2.2.0
 returns more rows

Data Correlation and Scope Chapter 4

[63]

 > JOIN employee_hr emph ON emp.name != emph.name;
 +----------+-----------------+
 | emp.name | emph.sin_number |
 +----------+-----------------+
 | Michael | 527-948-090 |
 | Michael | 647-968-598 |
 | Michael | 577-928-094 |
 | Will | 547-968-091 |
 | Will | 647-968-598 |
 | Will | 577-928-094 |
 | Shelley | 547-968-091 |
 | Shelley | 527-948-090 |
 | Shelley | 647-968-598 |
 | Shelley | 577-928-094 |
 | Lucy | 547-968-091 |
 | Lucy | 527-948-090 |
 | Lucy | 647-968-598 |
 +----------+-----------------+
 13 rows selected (24.341 seconds)

 -- Join with complex expression in join condition
 -- This is also the way to implement conditional join
 -- Below, conditional ignore row with name = 'Will'
 > SELECT
 > emp.name, emph.sin_number
 > FROM employee emp
 > JOIN employee_hr emph ON
 > IF(emp.name = 'Will', '1', emp.name) =
 > CASE WHEN emph.name = 'Will' THEN '0' ELSE emph.name END;
 +----------+-----------------+
 | emp.name | emph.sin_number |
 +----------+-----------------+
 | Michael | 547-968-091 |
 | Lucy | 577-928-094 |
 +----------+-----------------+
 2 rows selected (27.191 seconds)

 -- Use where/limit to limit the output of join
 > SELECT
 > emp.name, emph.sin_number
 > FROM employee emp
 > JOIN employee_hr emph ON emp.name = emph.name
 > WHERE
 > emp.name = 'Will';
 +----------+-----------------+
 | emp.name | emph.sin_number |
 +----------+-----------------+
 | Will | 527-948-090 |

Data Correlation and Scope Chapter 4

[64]

 +----------+-----------------+
 1 row selected (26.811 seconds)

The JOIN operation can be performed on more tables (such as table A, B, and C)3.
with sequence joins. The tables can either join from A to B and B to C, or join
from A to B and A to C:

 > SELECT
 > emp.name, empi.employee_id, emph.sin_number
 > FROM employee emp
 > JOIN employee_hr emph ON emp.name = emph.name
 > JOIN employee_id empi ON emp.name = empi.name;
 +-----------+-------------------+------------------+
 | emp.name | empi.employee_id | emph.sin_number |
 +-----------+-------------------+------------------+
 | Michael | 100 | 547-968-091 |
 | Will | 101 | 527-948-090 |
 | Lucy | 103 | 577-928-094 |
 +-----------+-------------------+------------------+
 3 rows selected (67.933 seconds)

Self-join is where one table joins itself. When doing such joins, a different alias4.
should be given to distinguish the same table:

 > SELECT
 > emp.name -- Use alias before column name
 > FROM employee emp
 > JOIN employee emp_b -- Here, use a different alias
 > ON emp.name = emp_b.name;
 +-----------+
 | emp.name |
 +-----------+
 | Michael |
 | Will |
 | Shelley |
 | Lucy |
 +-----------+
 4 rows selected (59.891 seconds)

Perform an implicit join without using the JOIN keyword. This is only applicable5.
to the INNER JOIN:

 > SELECT
 > emp.name, emph.sin_number
 > FROM
 > employee emp, employee_hr emph -- Only applies for inner join
 > WHERE

Data Correlation and Scope Chapter 4

[65]

 > emp.name = emph.name;
 +-----------+------------------+
 | emp.name | emph.sin_number |
 +-----------+------------------+
 | Michael | 547-968-091 |
 | Will | 527-948-090 |
 | Lucy | 577-928-094 |
 +-----------+------------------+
 3 rows selected (47.241 seconds)

The join condition uses different columns, which will create an additional job:6.

 > SELECT
 > emp.name, empi.employee_id, emph.sin_number
 > FROM employee emp
 > JOIN employee_hr emph ON emp.name = emph.name
 > JOIN employee_id empi ON emph.employee_id = empi.employee_id;
 +-----------+-------------------+------------------+
 | emp.name | empi.employee_id | emph.sin_number |
 +-----------+-------------------+------------------+
 | Michael | 100 | 547-968-091 |
 | Will | 101 | 527-948-090 |
 | Lucy | 103 | 577-928-094 |
 +-----------+-------------------+------------------+
 3 rows selected (49.785 seconds)

If JOIN uses different columns in its conditions, it will request an
additional job to complete the join. If the JOIN operation uses the same
column in the join conditions, it will join on this condition using one job.

When JOIN is performed between multiple tables, Yarn/MapReduce jobs are created to
process the data in the HDFS. Each of the jobs is called a stage. Usually, it is suggested to
put the big table right at the end of the JOIN statement for better performance and to
avoid Out Of Memory (OOM) exceptions. This is because the last table in the JOIN
sequence is usually streamed through reducers where as the others are buffered in the
reducer by default. Also, a hint, /*+STREAMTABLE (table_name)*/, can be specified to
advise which table should be streamed over the default decision, as in the following
example:

> SELECT /*+ STREAMTABLE(employee_hr) */
> emp.name, empi.employee_id, emph.sin_number
> FROM employee emp
> JOIN employee_hr emph ON emp.name = emph.name
> JOIN employee_id empi ON emph.employee_id = empi.employee_id;

Data Correlation and Scope Chapter 4

[66]

OUTER JOIN
Besides INNER JOIN, HQL also supports regular OUTER JOIN and FULL JOIN. The logic
of such a join is the same as what's in the SQL. The following table summarizes the
differences between common joins. Here, we assume table_m has m rows and table_n has
n rows with one-to-one mapping:

Join type Logic Rows
returned

table_m
JOIN table_n

This returns all rows matched in both tables. m ∩ n

table_m
LEFT JOIN table_n

This returns all rows in the left table and matched rows in the
right table. If there is no match in the right table, it
returns NULL in the right table.

m

table_m
RIGHT JOIN table_n

This returns all rows in the right table and matched rows in the
left table. If there is no match in the left table, it returns NULL in
the left table.

n

table_m
FULL JOIN table_n

This returns all rows in both tables and matched rows in both
tables. If there is no match in the left or right table, it
returns NULL instead.

m + n - m
∩ n

table_m
CROSS JOIN table_n

This returns all row combinations in both the tables to produce
a Cartesian product. m * n

The following examples demonstrate the different OUTER JOINs:

> SELECT
> emp.name, emph.sin_number
> FROM employee emp -- All rows in left table returned
> LEFT JOIN employee_hr emph ON emp.name = emph.name;
+-----------+------------------+
| emp.name | emph.sin_number |
+-----------+------------------+
| Michael | 547-968-091 |
| Will | 527-948-090 |
| Shelley | NULL | -- NULL for mismatch
| Lucy | 577-928-094 |
+-----------+------------------+
4 rows selected (39.637 seconds)

> SELECT
> emp.name, emph.sin_number
> FROM employee emp -- All rows in right table returned
> RIGHT JOIN employee_hr emph ON emp.name = emph.name;

Data Correlation and Scope Chapter 4

[67]

+-----------+------------------+
| emp.name | emph.sin_number |
+-----------+------------------+
| Michael | 547-968-091 |
| Will | 527-948-090 |
| NULL | 647-968-598 | -- NULL for mismatch
| Lucy | 577-928-094 |
+-----------+------------------+
4 rows selected (34.485 seconds)

> SELECT
> emp.name, emph.sin_number
> FROM employee emp -- Rows from both side returned
> FULL JOIN employee_hr emph ON emp.name = emph.name;
+-----------+------------------+
| emp.name | emph.sin_number |
+-----------+------------------+
| Lucy | 577-928-094 |
| Michael | 547-968-091 |
| Shelley | NULL | -- NULL for mismatch
| NULL | 647-968-598 | -- NULL for mismatch
| Will | 527-948-090 |
+-----------+------------------+
5 rows selected (64.251 seconds)

The CROSS JOIN statement does not have a join condition. The CROSS JOIN statement can
also be written using join without condition or with the always true condition, such as 1 = 1.
In this case, we can join any datasets with cross joins. However, we only consider using
such joins when we have to link data without relations in nature, such as adding headers
with a row count to a table. The following are three equal ways of writing CROSS JOIN:

> SELECT
> emp.name, emph.sin_number
> FROM employee emp
> CROSS JOIN employee_hr emph;

> SELECT
> emp.name, emph.sin_number
> FROM employee emp
> JOIN employee_hr emph;

> SELECT
> emp.name, emph.sin_number
> FROM employee emp
> JOIN employee_hr emph on 1=1;
+-----------+------------------+

Data Correlation and Scope Chapter 4

[68]

| emp.name | emph.sin_number |
+-----------+------------------+
Michael	547-968-091
Michael	527-948-090
Michael	647-968-598
Michael	577-928-094
Will	547-968-091
Will	527-948-090
Will	647-968-598
Will	577-928-094
Shelley	547-968-091
Shelley	527-948-090
Shelley	647-968-598
Shelley	577-928-094
Lucy	547-968-091
Lucy	527-948-090
Lucy	647-968-598
Lucy	577-928-094
+-----------+------------------+
16 rows selected (34.924 seconds)

Although Hive did not support unequal joins explicitly in the earlier version, there are
workarounds by using CROSS JOIN and WHERE, as in this example:

> SELECT
> emp.name, emph.sin_number
> FROM employee emp
> CROSS JOIN employee_hr emph
> WHERE emp.name <> emph.name;
+-----------+------------------+
| emp.name | emph.sin_number |
+-----------+------------------+
| Michael | 527-948-090 |
| Michael | 647-968-598 |
| Michael | 577-928-094 |
| Will | 547-968-091 |
| Will | 647-968-598 |
| Will | 577-928-094 |
| Shelley | 547-968-091 |
| Shelley | 527-948-090 |
| Shelley | 647-968-598 |
| Shelley | 577-928-094 |
| Lucy | 547-968-091 |
| Lucy | 527-948-090 |
| Lucy | 647-968-598 |
+-----------+------------------+
13 rows selected (35.016 seconds)

Data Correlation and Scope Chapter 4

[69]

Special joins
HQL also supports some special joins that we usually do not see in relational databases,
such as MapJoin and Semi-join. MapJoin means doing the join operation only with map,
without the reduce job. The MapJoin statement reads all the data from the small table to
memory and broadcasts to all maps. During the map phase, the join operation is performed
by comparing each row of data in the big table with small tables against the join conditions.
Because there is no reduce needed, such kinds of join usually have better performance. In
the newer version of Hive, Hive automatically converts join to MapJoin at runtime if
possible. However, you can also manually specify the broadcast table by providing a join
hint, /*+ MAPJOIN(table_name) */. In addition, MapJoin can be used for unequal joins
to improve performance since both MapJoin and WHERE are performed in the map phase.
The following is an example of using a MapJoin hint with CROSS JOIN:

> SELECT
> /*+ MAPJOIN(employee) */ emp.name, emph.sin_number
> FROM employee emp
> CROSS JOIN employee_hr emph
> WHERE emp.name <> emph.name;

The MapJoin operation does not support the following:

Using MapJoin after UNION ALL, LATERAL VIEW, GROUP BY/JOIN/SORT
BY/CLUSTER, and BY/DISTRIBUTE BY
Using MapJoin before UNION, JOIN, and another MapJoin

Bucket MapJoin is a special type of MapJoin that uses bucket columns (the column
specified by CLUSTERED BY in the CREATE TABLE statement) as the join condition. Instead
of fetching the whole table, as done by the regular MapJoin, bucket MapJoin only
fetches the required bucket data. To enable bucket MapJoin, we need to enable some
settings and make sure the bucket number is are multiple of each other. If both joined tables
are sorted and bucketed with the same number of buckets, a sort-merge join can be
performed instead of caching all small tables in the memory:

> SET hive.optimize.bucketmapjoin = true;
> SET hive.optimize.bucketmapjoin.sortedmerge = true;
> SET hive.input.format =
> org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;

Data Correlation and Scope Chapter 4

[70]

In addition, the LEFT SEMI JOIN statement is also a type of MapJoin. It is the same as
a subquery with IN/EXISTS after v0.13.0 of Hive. However, it is not recommended for use
since it is not part of standard SQL:

> SELECT a.name FROM employee a
> LEFT SEMI JOIN employee_id b ON a.name = b.name;

Combining data with UNION
When we want to combine data with the same schema together, we often use set
operations. Regular set operations in the relational database are INTERSECT, MINUS, and
UNION/UNION ALL. HQL only supports UNION and UNION ALL. The difference between
them is that UNION ALL does not remove duplicate rows while UNION does. In addition, all
unioned data must have the same name and data type, or else an implicit conversion will
be done and may cause a runtime exception. If ORDER BY, SORT BY, CLUSTER
BY, DISTRIBUTE BY, or LIMIT are used, they are applied to the whole result set after the
union:

> SELECT a.name as nm FROM employee a
> UNION ALL -- Use column alias to make the same name for union
> SELECT b.name as nm FROM employee_hr b;
+-----------+
| nm |
+-----------+
| Michael |
| Will |
| Shelley |
| Lucy |
| Michael |
| Will |
| Steven |
| Lucy |
+-----------+
8 rows selected (23.919 seconds)

> SELECT a.name as nm FROM employee a
> UNION -- UNION removes duplicated names and slower
> SELECT b.name as nm FROM employee_hr b;
+----------+
| nm |
+----------+
| Lucy |
| Michael |
| Shelley |

Data Correlation and Scope Chapter 4

[71]

| Steven |
| Will |
+----------+
5 rows selected (32.221 seconds)

-- Order by applies to the unioned data
-- When you want to order only one data set,
-- Use order in the subquery
> SELECT a.name as nm FROM employee a
> UNION ALL
> SELECT b.name as nm FROM employee_hr b
> ORDER BY nm;
+----------+
| nm |
+----------+
| Lucy |
| Lucy |
| Michael |
| Michael |
| Shelley |
| Steven |
| Will |
| Will |
+----------+

For other set operations that HQL does not support yet, such as INTERCEPT and MINUS, we
can use joins or left join to implement them as follows:

-- Use join for set intercept
> SELECT a.name
> FROM employee a
> JOIN employee_hr b ON a.name = b.name;
+----------+
| a.name |
+----------+
| Michael |
| Will |
| Lucy |
+----------+
3 rows selected (44.862 seconds)

-- Use left join for set minus
> SELECT a.name
> FROM employee a
> LEFT JOIN employee_hr b ON a.name = b.name
> WHERE b.name IS NULL;
+----------+

Data Correlation and Scope Chapter 4

[72]

| a.name |
+----------+
| Shelley |
+----------+
1 row selected (36.841 seconds)

Summary
In this chapter, you learned to use SELECT statements to project the data needed and filter
data with WHERE, LIMIT, IN/EXISTS. Then, we introduced different joins to link datasets
together, as well as the dataset operations UNION and UNION ALL. After going through this
chapter, you should be able to use the SELECT statement with different WHERE conditions,
LIMIT, DISTINCT, and complex subqueries. You should be able to understand and use
different types of JOIN statements to link the different datasets horizontally or UNION them
vertically.

In the next chapter, we will talk about the details of data exchanging, ordering, and
transforming, as well as transactions in HQL.

5
Data Manipulation

The ability to manipulate data is critical in big data analysis. Manipulating data is the
process of exchanging, moving, sorting, transforming, and modifying data. This technique
is used in many situations, such as cleaning data, searching patterns, creating trends, and so
on. HQL offers various statements, keywords, operators, and functions for carrying out
data manipulation.

In this chapter, we will cover the following topics:

Data exchange using LOAD, INSERT, IMPORT, and EXPORT
Data sorting
Functions
Transactions and locks

Data Manipulation Chapter 5

[74]

Data exchanging with LOAD
To move data, Hive uses the LOAD statement. Move here means the original data is moved
to the target table/partition and does not exist in the original place anymore. The LOCAL
keyword in the LOAD statement specifies where the files are located on the client host. If the
LOCAL keyword is not specified, the files are loaded from the full Uniform Resource
Identifier (URI) specified after INPATH (most of the time, hdfs path) or the value from the
fs.default.name property defined in hdfs-site.xml by default. The path after INPATH
can be a relative path or an absolute path. The path either points to a file or a folder
(referring to all files in the folder) to be loaded, but the subfolder is not allowed in the path
specified. If the data is loaded into a partition table, the partition column must be specified.
The OVERWRITE keyword is used to decide whether to replace the existing data in the target
table/partition or not. The following is an example of how to move data to the table or
partition from local or HDFS files:

Load local data in a table, internal or external. The load statement is not1.
repeatable since the files to be loaded are moved:

 > LOAD DATA LOCAL INPATH
 > '/home/dayongd/Downloads/employee_hr.txt'
 > OVERWRITE INTO TABLE employee_hr;
 No rows affected (0.436 seconds)

Load the local data to a partition:2.

 > LOAD DATA LOCAL INPATH
 > '/home/dayongd/Downloads/employee.txt'
 > OVERWRITE INTO TABLE employee_partitioned
 > PARTITION (year=2018, month=12);
 No rows affected (0.772 seconds)

Load data from HDFS to a table using the URI:3.

 -- Use default fs path
 > LOAD DATA INPATH
 > '/tmp/hivedemo/data/employee.txt'
 > INTO TABLE employee; -- Without OVERWRITE, it appends data
 No rows affected (0.453 seconds)

 -- Use full URI
 > LOAD DATA INPATH
 > 'hdfs://localhost:9000/tmp/hivedemo/data/employee.txt'
 > OVERWRITE INTO TABLE employee;
 No rows affected (0.297 seconds)

Data Manipulation Chapter 5

[75]

Data exchange with INSERT
To extract data from tables/partitions, we can use the INSERT keyword. Like other
relational databases, Hive supports inserting data into a table by selecting data from
another table. This is a very common ETL (a term in data warehousing for Extract,
Transform, and Load) pattern used to populate an existing or new table from another table
or dataset. The HQL INSERT statement has the same syntax as a relational database's
INSERT. However, HQL has improved its INSERT statement by supporting data
overwrittening, multi-insert, dynamic partition insert, as well as inserting data into files.
The following are a few examples of INSERT statements in HQL:

The following is a regular INSERT from the SELECT statement:1.

 -- Check the target table, which is empty.
 > SELECT name, work_place FROM employee;
 +-------------+-------------------+
 |employee.name|employee.work_place|
 +-------------+-------------------+
 +-------------+-------------------+
 No rows selected (0.115 seconds)

 -- Populate data from query while "INTO" will append data
 > INSERT INTO TABLE employee SELECT * FROM ctas_employee;
 No rows affected (31.701 seconds)

 -- Verify the data loaded
 > SELECT name, work_place FROM employee;
 +-------------+----------------------+
 |employee.name| employee.work_place |
 +-------------+----------------------+
 | Michael |["Montreal","Toronto"]|
 | Will |["Montreal"] |
 | Shelley |["New York"] |
 | Lucy |["Vancouver"] |
 +-------------+----------------------+
 4 rows selected (0.12 seconds)

Insert a table with specified columns. For columns not specified, NULL is2.
populated. However, there are two limitations for now. First, it only works for
INSERT INTO rather than INSERT OVERWRITE. Second, unspecified columns
must be the primary data type (such as array is not supported). The same
limitations also apply to INSERT INTO ... VALUES statements:

 > CREATE TABLE emp_simple(-- Create a test table only has
 primary types

Data Manipulation Chapter 5

[76]

 > name string,
 > work_place string
 >);
 No rows affected (1.479 seconds)

 > INSERT INTO TABLE emp_simple (name) -- Specify which columns to
 insert
 > SELECT name FROM employee WHERE name = 'Will';
 No rows affected (30.701 seconds)

 > INSERT INTO TABLE emp_simple VALUES -- Insert constant values
 > ('Michael', 'Toronto'),('Lucy', 'Montreal');
 No rows affected (18.045 seconds)

 > SELECT * FROM emp_simple; -- Verify the data loaded
 +---------+------------+
 | name | work_place |
 +---------+------------+
 | Will | NULL | -- NULL when column is not specified
 | Michael | Toronto |
 | Lucy | Montreal |
 +---------+------------+
 3 rows selected (0.263 seconds)

Insert data from the CTE statement:3.

 > WITH a as (
 > SELECT * FROM ctas_employee
 >)
 > FROM a
 > INSERT OVERWRITE TABLE employee
 > SELECT *;
 No rows affected (30.1 seconds)

Run multi-insert by only scanning the source table once for better performance:4.

 > FROM ctas_employee
 > INSERT OVERWRITE TABLE employee
 > SELECT *
 > INSERT OVERWRITE TABLE employee_internal
 > SELECT *
 > INSERT OVERWRITE TABLE employee_partitioned
 > PARTITION (year=2018, month=9) -- Insert to static partition
 > SELECT *
 > ;
 No rows affected (27.919 seconds)

Data Manipulation Chapter 5

[77]

The INSERT OVERWRITE statement will replace the data in the target
table/partition, while INSERT INTO will append data.

When inserting data into the partitions, we need to specify the partition columns. Instead of
specifying static partition values, Hive also supports dynamically giving partition values.
Dynamic partitions are useful when it is necessary to populate partitions dynamically from
data values. Dynamic partitions are disabled by default because a careless dynamic
partition insert could create many partitions unexpectedly. We have to set the following
properties to enable dynamic partitions:

> SET hive.exec.dynamic.partition=true;
No rows affected (0.002 seconds)

By default, the user must specify at least one static partition column. This is to avoid
accidentally overwriting partitions. To disable this restriction, we can set the partition mode
to nonstrict from the default strict mode before inserting into dynamic partitions as
follows:

> SET hive.exec.dynamic.partition.mode=nonstrict;
No rows affected (0.002 seconds)

-- Partition year, month are determined from data
> INSERT INTO TABLE employee_partitioned
> PARTITION(year, month)
> SELECT name, array('Toronto') as work_place,
> named_struct("gender","Male","age",30) as gender_age,
> map("Python",90) as skills_score,
> map("R&D",array('Developer')) as depart_title,
> year(start_date) as year, month(start_date) as month
> FROM employee_hr eh
> WHERE eh.employee_id = 102;
No rows affected (29.024 seconds)

Complex type constructors are used in the preceding example to create a
constant value of a complex data type.

Data Manipulation Chapter 5

[78]

INSERT also supports writing data to files, which is the opposite operation compared
to LOAD. It is usually used to extract data from SELECT statements to files in the local/HDFS
directory. However, it only supports the OVERWRITE keyword, which means we can only
overwrite rather than append data to the data files. By default, the columns are separated
by Ctrl+A and rows are separated by newlines in the exported file. Column, row, and
collection separators can also be overwritten like in the table creation statement. The
following are a few examples of exporting data to files using the INSERT OVERWRITE ...
directory statement:

We can insert to local files with default row separators:1.

 > INSERT OVERWRITE LOCAL DIRECTORY '/tmp/output1'
 > SELECT * FROM employee;
 No rows affected (30.859 seconds)

Many partial files could be created by reducers when doing an insert into
a directory. To merge them into one file, we can use the HDFS merge
command: hdfs dfs –getmerge <exported_hdfs_folder>
<local_folder>.

Insert into local files with specified row separators:2.

 > INSERT OVERWRITE LOCAL DIRECTORY '/tmp/output2'
 > ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
 > SELECT * FROM employee;
 No rows affected (31.937 seconds)

 -- Verify the separator
 $vi /tmp/output2/000000_0
 Michael,Montreal^BToronto,Male^B30,DB^C80,
 Product^CDeveloper^DLead
 Will,Montreal,Male^B35,Perl^C85,Product^CLead^BTest^CLead
 Shelley,New York,Female^B27,Python^C80,Test^CLead^BCOE^CArchitect
 Lucy,Vancouver,Female^B57,Sales^C89^BHR^C94,Sales^CLead

Use multi-insert statements to export data from the same table:3.

 > FROM employee
 > INSERT OVERWRITE DIRECTORY '/user/dayongd/output3'
 > SELECT *
 > INSERT OVERWRITE DIRECTORY '/user/dayongd/output4'
 > SELECT name ;
 No rows affected (25.4 seconds)

Data Manipulation Chapter 5

[79]

Combined HQL and HDFS shell commands, we can extract data to local
or remote files with both append and overwrite supported. The hive -e
quoted_hql_string or hive -f <hql_filename> commands can
execute a HQL query or query file. Linux's redirect operators and piping
can be used with these commands to redirect result sets. The following are
a few examples:

Append to local files: $hive -e 'select * from
employee' >> test

Overwrite local files: $hive -e 'select * from
employee' > test

Append to HDFS files: $hive -e 'select * from
employee'|hdfs dfs -appendToFile - /tmp/test1

Overwrite HDFS files: $hive -e 'select * from
employee'|hdfs dfs -put -f - /tmp/test2

Data exchange with [EX|IM]PORT
When working on data migration or release deployment, we may need to move data
between different environments or clusters. In HQL, EXPORT and IMPORT statements are
available to move data between HDFS in different environments or clusters. The EXPORT
statement exports both data and metadata from a table or partition. Metadata is exported in
a file called _metadata. Data is exported in a subdirectory called data, as follows:

> EXPORT TABLE employee TO '/tmp/output5';
No rows affected (0.19 seconds)
> dfs -ls -R /tmp/output5/;
+--------------------------------+
| DFS Output |
+--------------------------------+
| ... /tmp/output5/_metadata |
| ... /tmp/output5/data |
| ... /tmp/output5/data/000000_0 |
+--------------------------------+
3 rows selected (0.014 seconds)

For EXPORT, the database name can be used before the table name without
any syntax error, but the database is useless and ignored by the IMPORT
statement.

Data Manipulation Chapter 5

[80]

Once exported, we can copy exported files to other clusters manually or with the hadoop
distcp <srcurl> <desturl> command. Then, we can import data in the following
ways:

Import data into a new table. If the table exists, it will throw an error:1.

 > IMPORT TABLE FROM '/tmp/output5'; -- By default, use exported
 name
 Error: Error while compiling statement: FAILED: SemanticException
 [Error 10119]: Table exists and contains data files
 (state=42000,code=10119)
 > IMPORT TABLE empolyee_imported -- Specify a table imported
 > FROM '/tmp/output5';
 No rows affected (0.788 seconds)

Import data to an external table, where the LOCATION property is optional:2.

 > IMPORT EXTERNAL TABLE empolyee_imported_external
 > FROM '/tmp/output5'
 > LOCATION '/tmp/output6';
 No rows affected (0.256 seconds)

Export and import partitions:3.

 > EXPORT TABLE employee_partitioned partition
 > (year=2018, month=12) TO '/tmp/output7';
 No rows affected (0.247 seconds)
 > IMPORT TABLE employee_partitioned_imported
 > FROM '/tmp/output7';
 No rows affected (0.14 seconds)

Data sorting
Another aspect of manipulating data is properly sorting it in order to clearly identify
important facts, such as top the N values, maximum, minimum, and so on. HQL supports
the following keywords for data sorting:

Data Manipulation Chapter 5

[81]

ORDER BY [ASC|DESC]: It is similar to the SQL ORDER BY statement. When1.
using ORDER BY, a sorted order is maintained across all of the output from every
reducer. It performs a global sort using only one reducer, so it takes longer to
return the result. The direction specifier after ORDER BY can be either ASC for
ascending (low to high) or DESC for descending (high to low). If you do not
provide a direction specifier, the default of ascending is used. Since v2.1.0,
the ORDER BY statement supports specifying the sorting direction for the NULL
value, such as NULL FIRST or NULL LAST. By default, NULL stays at the first
place in the ASC direction and the last place in the DESC direction:

 > SELECT name FROM employee ORDER BY name DESC; -- By columns
 +----------+
 | name |
 +----------+
 | Will |
 | Shelley |
 | Michael |
 | Lucy |
 +----------+
 4 rows selected (24.057 seconds)

 > SELECT name
 > FROM employee -- Order by expression
 > ORDER BY CASE WHEN name = 'Will' THEN 0 ELSE 1 END DESC;
 +----------+
 | name |
 +----------+
 | Lucy |
 | Shelley |
 | Michael |
 | Will |
 +----------+
 4 rows selected (25.057 seconds)

 > SELECT * FROM emp_simple ORDER BY work_place NULL LAST;
 +---------+------------+
 | name | work_place |
 +---------+------------+
 | Lucy | Montreal |
 | Michael | Toronto |
 | Will | NULL | -- NULL stays at the last
 +---------+------------+
 3 rows selected (0.263 seconds)

Data Manipulation Chapter 5

[82]

Using LIMIT with ORDER BY is strongly recommended. When the
hive.mapred.mode = strict property is set (the default value
for hive.mapred.mode is nonstrict in Hive v1.* and strict in Hive
v2.*), it throws exceptions when using ORDER BY without LIMIT.

SORT BY [ASC|DESC]: It specifies which columns to use to sort reducer input2.
records. This means the sorting is completed before sending data to the reducer.
The SORT BY statement does not perform a global sort (but ORDER BY does) and
only ensures data is locally sorted in each reducer. If SORT BY sorts with
only one reducer (set mapred.reduce.tasks=1), it is equal to ORDER BY, as
the following example shows. Most of the time, SORT BY itself is useless but is
used with DISTRIBUTE BY, which is introduced next:

 > SET mapred.reduce.tasks = 2; -- Sort by with more than 1 reducer
 No rows affected (0.001 seconds)

 > SELECT name FROM employee SORT BY name DESC;
 +---------+
 | name |
 +---------+
 | Shelley | -- Once result is collected to client, it is
 | Michael | order-less
 | Lucy |
 | Will |
 +---------+
 4 rows selected (54.386 seconds)
 > SET mapred.reduce.tasks = 1; -- Sort by one reducer
 No rows affected (0.002 seconds)

 > SELECT name FROM employee SORT BY name DESC;
 +----------+
 | name |
 +----------+
 | Will | -- Same result to ORDER BY
 | Shelley |
 | Michael |
 | Lucy |
 +----------+
 4 rows selected (46.03 seconds)

Data Manipulation Chapter 5

[83]

DISTRIBUTE BY: It is very similar to GROUP BY (introduced in Chapter 6, Data3.
Aggregation and Sampling) when the mapper decides to which reducer it can
deliver the output. Compared to GROUP BY, DISTRIBUTE BY will not work on
data aggregations, such as count(*), but only directs where data goes. In this
case, DISTRIBUTE BY is quite often used to reorganize data in files by specified
columns. For example, we may need to use DISTRIBUTE BY after a UNION result
set to reorganize data in higher granularity. When used with SORT BY to sort
data within specified groups, DISTRIBUTE BY can be used before SORT BY in
one query. In addition, the columns after DISTRIBUTE BY must appear in the
select column list as follows:

 -- Error when not specify distributed column employee_id in
 select
 > SELECT name FROM employee_hr DISTRIBUTE BY employee_id;
 Error: Error while compiling statement: FAILED: SemanticException
 [Error 10004]: Line 1:44 Invalid table alias or column reference
 'employee_id': (possible column names are: name)

 > SELECT name, employee_id FROM employee_hr DISTRIBUTE BY
 employee_id;
 +----------+--------------+
 | name | employee_id |
 +----------+--------------+
 | Lucy | 103 |
 | Steven | 102 |
 | Will | 101 |
 | Michael | 100 |
 +----------+--------------+
 4 rows selected (38.92 seconds)

 -- Used with SORT BY to order name started on the same day
 > SELECT name, start_date
 > FROM employee_hr
 > DISTRIBUTE BY start_date SORT BY name;
 +----------+--------------+
 | name | start_date |
 +----------+--------------+
 | Lucy | 2010-01-03 |
 | Michael | 2014-01-29 |
 | Steven | 2012-11-03 |
 | Will | 2013-10-02 |
 +----------+--------------+
 4 rows selected (38.01 seconds)

Data Manipulation Chapter 5

[84]

CLUSTER BY: It is a shortcut operator you can use to perform DISTRIBUTE BY4.
and SORT BY operations on the same group of columns. The CLUSTER BY
statement does not allow you to specify ASC or DESC yet. Compared to ORDER
BY, which is globally sorted, the CLUSTER BY statement sorts data in each
distributed group:

 > SELECT name, employee_id FROM employee_hr CLUSTER BY name;
 +----------+--------------+
 | name | employee_id |
 +----------+--------------+
 | Lucy | 103 |
 | Michael | 100 |
 | Steven | 102 |
 | Will | 101 |
 +----------+--------------+
 4 rows selected (39.791 seconds)

When we have to do a global sort, we can do CLUSTER BY first and
then ORDER BY. In this way, we can fully utilize all the available reducers
ahead of ORDER BY and have better performance, for example: SELECT *
FROM (SELECT * FROM employee CLUSTER BY name) base ORDER

BY name;.

In summary, the difference between these sorting keywords is shown in the following
diagram:

HQL sorting keywords difference

Data Manipulation Chapter 5

[85]

Functions
To further manipulate data, we can also use operators, expressions, and functions in HQL
to transform data. The Hive wiki (https:/ ​/​cwiki. ​apache. ​org/ ​confluence/ ​display/ ​Hive/
LanguageManual+UDF) offers specifications for all supported expressions and functions, so
we do not want to repeat all of them here, except a few important tips in this chapter.

Hive has defined relational operators, arithmetic operators, logical operators, complex type
operators, and complex type constructors. For relational, arithmetic, and logical operators,
they are similar to standard operators in SQL/Java. For operators on a complex data type,
we have already introduced them in the Understanding Hive data types Section in Chapter 3,
Data Definition and Description, as well as the example of inserting data into dynamic
partitions earlier in this chapter. Functions in HQL are categorized as follows:

Mathematical functions: They are mainly used to perform mathematical
calculations, such as rand(...) and pi(...)
Collection functions: They are used to find the size, keys, and values for
complex types, such as size(...)
Type conversion functions: These are mainly cast(...) and binary(...)
functions to convert one type to another
Date functions: They are used to perform date-related calculations, such as
year(...) and month(...)
Conditional functions: They are used to check specific conditions with a defined
value returned, such as coalesce(...), if(...), and case when then else
end
String functions: They are used to perform string-related operations, such as
upper(...) and trim(...)
Aggregate functions: They are used to perform aggregation (introduced in the
next chapter), such as sum(...) and count(*)
Table-generating functions: These functions transform a single input row into
multiple output rows, such as explode(...) and json_tuple(...)
Customized functions: These functions are created by Java as extensions, and are
introduced in Chapter 8, Extensibility Considerations

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

Data Manipulation Chapter 5

[86]

To list all operators, built-in functions, and user-defined functions, we can use the SHOW
FUNCTIONS commands. For more details of a specific function, we can use DESC
[EXTENDED] function_name as follows:

> SHOW FUNCTIONS; -- List all functions
> DESCRIBE FUNCTION <function_name>; -- Detail for the function
> DESCRIBE FUNCTION EXTENDED <function_name>; -- More details

The following are some tips and best practices using HQL functions with examples.

Function tips for collections
The size(...) function is used to calculate the collection size for the MAP, ARRAY, or
nested MAP/ARRAY. It returns -1 if the collection is NULL and returns 0 if the collection is
empty, as follows:

> SELECT
> SIZE(work_place) as array_size,
> SIZE(skills_score) as map_size,
> SIZE(depart_title) as complex_size,
> SIZE(depart_title["Product"]) as nest_size
> FROM employee;
+-------------+-----------+---------------+------------+
| array_size | map_size | complex_size | nest_size |
+-------------+-----------+---------------+------------+
| 2 | 1 | 1 | 2 |
| 1 | 1 | 2 | 1 |
| 1 | 1 | 2 | -1 |
| 1 | 2 | 1 | -1 |
+-------------+-----------+---------------+------------+
4 rows selected (0.062 seconds)

> SELECT size(null), size(array(null)), size(array());
+-----+-----+-----+
| _c0 | _c1 | _c2 |
+-----+-----+-----+
| -1 | 1 | 0 |
+-----+-----+-----+
1 row selected (11.453 seconds)

The array_contains(...) function checks whether an array contains some values or not
and returns TRUE or FALSE. The sort_array(...) function sorts the array in ascending
order. These can be used as follows:

Data Manipulation Chapter 5

[87]

> SELECT
> array_contains(work_place, 'Toronto') as is_Toronto,
> sort_array(work_place) as sorted_array
> FROM employee;
+-------------+-------------------------+
| is_toronto | sorted_array |
+-------------+-------------------------+
| true | ["Montreal","Toronto"] |
| false | ["Montreal"] |
| false | ["New York"] |
| false | ["Vancouver"] |
+-------------+-------------------------+
4 rows selected (0.059 seconds)

Function tips for date and string
The to_date(...) function removes hours, minutes, and seconds from a date. This is
useful when we need to check whether the values of date/time type columns are within the
data range, such as to_date(update_datetime) between 2014-11-01 and 2014-11-31.
to_date(...) can be used as follows:

> SELECT TO_DATE(FROM_UNIXTIME(UNIX_TIMESTAMP())) as currentdate;
+---------------+
| currentdate |
+---------------+
| 2018-05-15 |
+---------------+
1 row selected (0.153 seconds)

The reverse(...) function reverses the order of each letter in a string. The split(...)
function tokenizes the string using a specified tokenizer. Here is an example of using both
of them to get the filename from a path:

> SELECT
> reverse(split(reverse('/home/user/employee.txt'),'/')[0])
> as linux_file_name;
+------------------+
| linux_file_name |
+------------------+
| employee.txt |
+------------------+
1 row selected (0.1 seconds)

Data Manipulation Chapter 5

[88]

Whereas explode(...) outputs each element in an array or map as separate rows,
collect_set(...) and collect_list(...) do the opposite by returning a set/list of
elements from each group. The collect_set(...) statement will remove duplications
from the result, but collect_list(...) does not:

> SELECT
> collect_set(gender_age.gender) as gender_set,
> collect_list(gender_age.gender) as gender_list
> FROM employee;
+-------------------+-----------------------------------+
| gender_set | gender_list |
+-------------------+-----------------------------------+
| ["Male","Female"] | ["Male","Male","Female","Female"] |
+-------------------+-----------------------------------+
1 row selected (24.488 seconds)

Virtual column functions
Virtual columns are special functions in HQL. Right now, there are two virtual columns:
INPUT__FILE__NAME and BLOCK__OFFSET__INSIDE__FILE. The INPUT__FILE__NAME
function shows the input file's name for a mapper task.The
BLOCK__OFFSET__INSIDE__FILE function shows the current global file position or the
current block's file offset if the file is compressed. The following are examples of using
virtual columns to find out where data is physically located in HDFS, especially for
bucketed and partitioned tables:

> SELECT
> INPUT__FILE__NAME,BLOCK__OFFSET__INSIDE__FILE as OFFSIDE
> FROM employee;
+---+
| input__file__name | offside |
+---+
| hdfs://localhost:9000/user/hive/warehouse/employee/000000_0 | 0 |
| hdfs://localhost:9000/user/hive/warehouse/employee/000000_0 | 62 |
| hdfs://localhost:9000/user/hive/warehouse/employee/000000_0 | 115 |
| hdfs://localhost:9000/user/hive/warehouse/employee/000000_0 | 176 |
+---+---------+
4 rows selected (0.47 seconds)

Data Manipulation Chapter 5

[89]

Transactions and locks
ACID (Atomicity, Consistency, Isolation, and Durability) is a long-expected Hive feature,
and builds a foundation for relational databases; it has been available since Hive v0.14.0.
Full ACID support in Hive is implemented through row-level transactions and locks. This
makes it possible for Hive to deal with use cases such as concurrent read/write, data
cleaning, data modification, complex ETL/SCD (Slow Changing Dimensions), streaming
data ingest, bulk data merge, and so on. In this section, we'll introduce them in more detail.

Transactions
For now, all transactions in HQL are auto-committed without supporting BEGIN, COMMIT,
and ROLLBACK, like as with relational databases. Also, the table that has a transaction
feature enabled has to be a bucket table with the ORC file format. The following
configuration parameters must be set appropriately in hive-site.xml or beeline
connection string to turn on transaction support:

> SET hive.support.concurrency = true;
> SET hive.enforce.bucketing = true;
> SET hive.exec.dynamic.partition.mode = nonstrict;
> SET hive.txn.manager =
> org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;
> SET hive.compactor.initiator.on = true;
> SET hive.compactor.worker.threads = 1;

When a transaction is enabled, each transaction-related operation, such as
INSERT, UPDATE, and DELETE, stores data in delta files. At read time, the
reader merges the base and delta files, applying any updates and deletes.
Both base and delta directory names contain the transaction IDs.
Occasionally, these changes need to be merged into the base files by
compactors, which are background processes in the metastore, for better
performance and smaller file size. To see a list of all tables/partitions
currently being compacted or scheduled for compaction, use the SHOW
COMPACTIONS statement.

Data Manipulation Chapter 5

[90]

Then, create a table with transactions enabled in the table properties and populate the data:

> CREATE TABLE employee_trans (
> emp_id int,
> name string,
> start_date date,
> quit_date date,
> quit_flag string
>)
> CLUSTERED BY (emp_id) INTO 2 BUCKETS STORED as ORC
> TBLPROPERTIES ('transactional'='true'); -- Also need to set this
No rows affected (2.216 seconds)

> INSERT INTO TABLE employee_trans VALUES
> (100, 'Michael', '2017-02-01', null, 'N'),
> (101, 'Will', '2017-03-01', null, 'N'),
> (102, 'Steven', '2018-01-01', null, 'N'),
> (104, 'Lucy', '2017-10-01', null, 'N');
No rows affected (48.216 seconds)

For a table with transactions enabled, we can perform UPDATE, DELETE, and MERGE
operations on data.

UPDATE statement
The UPDATE statement is used to update one or more columns in a table when certain
conditions are met. Here, the updated columns cannot partition columns or bucket
columns. The value used for updating should be an expression or constant rather than a
subquery:

> UPDATE employee_trans
> SET quite_date = current_date, quit_flag = 'Y'
> WHERE emp_id = 104;
No rows affected (39.745 seconds)

> SELECT
> quit_date, quit_flag
> FROM employee_trans
> WHERE emp_id = 104; -- Verify the update
+-------------+-----------+
| quit_date | quit_flag |
+-------------+-----------+
| 2018-04-20 | Y |
+-------------+-----------+
1 row selected (0.325 seconds)

Data Manipulation Chapter 5

[91]

DELETE statement
The DELETE statement is used to remove one or more rows from a table when a certain
condition is met as follows:

> DELETE FROM employee_trans WHERE emp_id = 104;
No rows affected (42.298 seconds)

-- Verify the result, deleted
> SELECT name FROM employee_trans WHERE emp_id = 104;
+------+
| name |
+------+
+------+
No rows selected (0.33 seconds)

MERGE statement
The MERGE statement, available since Hive 2.2, is used to perform UPDATE, DELETE,
or INSERT on a target table, based on the JOIN condition matching or not against a source
table or query. The standard syntax is as follows:

MERGE INTO <target_table> as Target USING <source_query/table> as Source
ON <join_condition between two tables>
WHEN MATCHED [AND <boolean expression>] THEN UPDATE SET <set clause list>
WHEN MATCHED [AND <boolean expression>] THEN DELETE
WHEN NOT MATCHED [AND <boolean expression>] THEN INSERT VALUES <value list>

The current limitations for the MERGE INTO statement are as follows:

One, two, or three WHEN clauses may be present
At most one of each type of UPDATE/DELETE/INSERT can be used
WHEN NOT MATCHED must be the last clause and only supports INSERT VALUES
<value_list>

WHEN MATCHED only supports UPDATE or DELETE
If both UPDATE and DELETE clauses are present, the first one in the statement
must include [AND <boolean expression>]

Data Manipulation Chapter 5

[92]

Here is an example of merging data in HQL:

-- Create another table as merge source
> CREATE TABLE employee_update (
> emp_id int,
> name string,
> start_date date,
> quit_date date,
> quit_flag string
>);
No rows affected (0.127 seconds)

-- Populate data
> INSERT INTO TABLE employee_update VALUES
> (100, 'Michael', '2017-02-01', '2018-01-01', 'Y'), -- People quit
> (102, 'Steven', '2018-01-02', null, 'N'), -- People has start_date update
> (105, 'Lily', '2018-04-01', null, 'N'); -- People newly started
No rows affected (19.832 seconds)

-- Do a data merge from employee_update to employee_trans
> MERGE INTO employee_trans as tar USING employee_update as src
> ON tar.emp_id = src.emp_id
> WHEN MATCHED and src.quit_flag <> 'Y' THEN UPDATE SET start_date
src.start_date
> WHEN MATCHED and src.quit_flag = 'Y' THEN DELETE
> WHEN NOT MATCHED THEN INSERT VALUES (src.emp_id, src.name,
src.start_date, src.quit_date, src.quit_flag);
No rows affected (174.357 seconds)

SELECT * FROM employee_trans; -- Verify the result, Michael is deleted
+--------+--------+------------+-----------+-----------+
| emp_id | name |start_date | quit_date | quit_flag |
+--------+--------+------------+-----------+-----------+
| 102 | Steven | 2018-01-02 | NULL | N | -- Update
| 101 | Will | 2017-03-01 | NULL | N |
| 105 | Lily | 2018-04-01 | NULL | N | -- Insert
+--------+--------+------------+-----------+-----------+
3 rows selected (0.356 seconds)

In HQL, the SHOW TRANSACTIONS statement is available to show currently open and
aborted transactions in the system. When we run the previous queries, we can open another
Hive connection and issue this statement to see the current transactions:

Data Manipulation Chapter 5

[93]

> SHOW TRANSACTIONS;
+-----+-----+-------------+-----------------+-------+----------+
|txnid|state|startedtime |lastheartbeattime|user |host |
+-----+-----+-------------+-----------------+-------+----------+
|2 |OPEN |1524183790000|1524183790000 |vagrant|vagrant.vm|
+-----+-----+-------------+-----------------+-------+----------+
2 rows selected (0.063 seconds)

The ABORT TRANSACTIONS transaction_id statement has been used to
kill a transaction with a specified ID since Hive v2.1.0.

Locks
Locks ensure data isolation as described in the ACID principle. Hive has supported
concurrency access and locking mechanisms since v0.7.0 and updated to a new lock
manager in v0.13.0. There are two types of lock provided as follows:

Shared lock: Also called S lock, it allows being shared concurrently. This is
acquired when a table/partition is read.
Exclusive lock: Also called X lock. This is acquired for all other operations that
modify the table/partition.

For partition tables, only a shared lock is acquired if the change is only
applicable to the newly-created partitions. An exclusive lock is acquired
on the table if the change is applicable to all partitions. In addition, an
exclusive lock on the table globally affects all partitions. For more
information regarding locks, see https:/ ​/​cwiki. ​apache. ​org/
confluence/ ​display/ ​Hive/ ​Locking.

To enable locking, make sure the two properties are set in a Hive session or hive-
site.xml (refer Transaction, section above):

hive.support.concurrency = true
hive.txn.manager =
org.apache.hadoop.hive.ql.lockmgr.DbTxnManager

https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking
https://cwiki.apache.org/confluence/display/Hive/Locking

Data Manipulation Chapter 5

[94]

Any query must acquire proper locks before being allowed to perform corresponding lock-
permitted operations. When the query is SELECT, it will get an S lock. Concurrent SELECT
statements on the same table will get multiple S locks and run in parallel. When the query
is INSERT, it will get an X lock. Concurrent INSERT statements will only get one X lock, so
an INSERT has to wait until the lock is released by the other INSERT. In addition, a table
can only have one X lock. When trying to get an X lock, there should no other locks on the
table, or else the operation that requires an X lock, such as INSERT, ALTER, has to wait and
retry (the hive.lock.sleep.between.retries property controls the retry time).

By using the new lock manager, DbTxnManager, locks can only be acquired/released from a
query implicitly. To see the locks on the table, use the SHOW LOCKS/SHOW LOCKS
table_name statement:

-- Show all locks when running merge into above
> SHOW LOCKS;
+--------+----------+-----------------+------------+------------+
| lockid | database | table | lock_state | lock_type |
+--------+----------+-----------------+------------+------------+
| 19.1 | default | employee_update | ACQUIRED | SHARED_READ|
| 19.2 | default | employee_trans | ACQUIRED |SHARED_WRITE|
+--------+----------+-----------------+-------------------------+
3 rows selected (0.059 seconds)

Summary
In this chapter, we covered how to exchange data between tables and files using the LOAD,
INSERT, IMPORT, and EXPORT keywords. Then, we introduced the different data ordering
and sorting options. We also covered some commonly used tips on using functions. Finally,
we provided an overview of row-level transactions, DELETE, UPDATE, MERGE, and locks.
After going through this chapter, we should be able to import or export data with HQL. We
should be experienced in using different types of data sorting keywords, functions, and
transaction statements.

In the next chapter, we'll look at the different ways of carrying out data aggregations and
sampling in HQL.

6
Data Aggregation and Sampling

This chapter is about how to aggregate and sample data in HQL. It first
covers the use of several aggregate functions, enhanced aggregate

functions, and window functions working with a GROUP BY, PARTITION BY
statement. Then, it introduces the different ways of sampling data. In this
chapter, we will cover the following topics:

Basic aggregation
Enhanced aggregation
Aggregation condition
Window functions
Sampling

Basic aggregation
Data aggregation is the process of gathering and expressing data in a summary to get more
information about particular groups based on specific conditions. HQL offers several built-
in aggregate functions, such as max(...), min(...), and avg(...). It also supports
advanced aggregation using keywords such as GROUPING SETS, ROLLUP, and CUBE, and
different types of window function.

The basic built-in aggregate functions are usually used with the GROUP BY clause. If there is
no GROUP BY clause specified, it aggregates over the whole row (all columns) by default.
Besides aggregate functions, all columns selected must also be included in the GROUP BY
clause. The following are a few examples involving the built-in aggregate functions:

 Aggregation without GROUP BY columns:1.

 > SELECT
 > count(*) as rowcnt1,
 > count(1) as rowcnt2 -- same to count(*)
 > FROM employee;

Data Aggregation and Sampling Chapter 6

[96]

 +---------+---------+
 | rowcnt1 | rowcnt2 |
 +---------+---------+
 | 4 | 4 |
 +---------+---------+
 1 row selected (0.184 seconds)

Sometimes, the basic aggregate function call returns the result
immediately, such as in the previous example, where it took less than 0.2
seconds. The reason is that Hive fetches such aggregation results directly
from the statistics collected (introduced in Chapter 8, Extensibility
Considerations). To get the aggregation by actually running a job, you may
need to add a limit or where clause in the query.

Aggregation with GROUP BY columns:2.

 > SELECT
 > gender_age.gender, count(*) as row_cnt
 > FROM employee
 > GROUP BY gender_age.gender;
 +--------------------+----------+
 | gender_age.gender | row_cnt |
 +--------------------+----------+
 | Female | 2 |
 | Male | 3 |
 +--------------------+----------+
 2 rows selected (100.565 seconds)

 -- The column name selected is not a group by columns causes error
 > SELECT
 > name, gender_age.gender, count(*) as row_cnt
 > FROM employee GROUP BY gender_age.gender;
 Error: Error while compiling statement: FAILED: SemanticException
 [Error 10025]: Line 2:1 Expression
 not in GROUP BY key 'name' (state=42000,code=10025)

If we have to select columns that are not GROUP BY columns, one way is to
use window functions, which are introduced later.

Data Aggregation and Sampling Chapter 6

[97]

An aggregate function can be used with other aggregate functions in the same SELECT
statement. It can also be used with other functions, such as conditional functions, in a
nested way. However, nested aggregate functions are not supported. See the following
examples for more details:

Multiple aggregate functions in the same SELECT statement:1.

 > SELECT
 > gender_age.gender, avg(gender_age.age) as avg_age,
 > count(*) as row_cnt
 > FROM employee GROUP BY gender_age.gender;
 +--------------------+---------------------+----------+
 | gender_age.gender | avg_age | row_cnt |
 +--------------------+---------------------+----------+
 | Female | 42.0 | 2 |
 | Male | 31.666666666666668 | 3 |
 +--------------------+---------------------+----------+
 2 rows selected (98.857 seconds)

Aggregate functions can also be used with CASE WHEN THEN ELSE END,2.
coalesce(...), or if(...):

 > SELECT
 > sum(CASE WHEN gender_age.gender = 'Male'
 > THEN gender_age.age ELSE 0 END)/
 > count(CASE WHEN gender_age.gender = 'Male' THEN 1
 > ELSE NULL END) as male_age_avg
 > FROM employee;
 +---------------------+
 | male_age_avg |
 +---------------------+
 | 31.666666666666668 |
 +---------------------+
 1 row selected (38.415 seconds)

 > SELECT
 > sum(coalesce(gender_age.age,0)) as age_sum,
 > sum(if(gender_age.gender = 'Female',gender_age.age,0)) as
 female_age_sum
 > FROM employee;
 +----------+----------------+
 | age_sum | female_age_sum |
 +----------+----------------+
 | 179 | 84 |
 +----------+----------------+
 1 row selected (42.137 seconds)

Data Aggregation and Sampling Chapter 6

[98]

GROUP BY can also apply to expressions:3.

 > SELECT
 > if(name = 'Will', 1, 0) as name_group,
 > count(name) as name_cnt
 > FROM employee
 > GROUP BY if(name = 'Will', 1, 0);
 +------------+----------+
 | name_group | name_cnt |
 +------------+----------+
 | 0 | 3 |
 | 1 | 1 |
 +------------+----------+
 2 rows selected (23.749 seconds)

Verify that nested aggregate functions are not allowed:4.

 > SELECT avg(count(*)) as row_cnt FROM employee;
 Error: Error while compiling statement: FAILED: SemanticException
 [Error 10128]: Line 1:11 Not yet
 supported place for UDAF 'count' (state=42000,code=10128)

Aggregate functions such as max(...) or min(...) apply to NULL and return5.
NULL. However, functions such as sum() and avg(...) cannot apply to NULL.
The count(null) returns 0.

 > SELECT max(null), min(null), count(null);
 +------+------+-----+
 | _c0 | _c1 | _c2 |
 +------+------+-----+
 | NULL | NULL | 0 |
 +------+------+-----+
 1 row selected (23.54 seconds)

 > SELECT sum(null), avg(null);
 Error: Error while compiling statement: FAILED:
 UDFArgumentTypeException Only numeric or string type
 arguments are accepted but void is passed.
 (state=42000,code=40000)

Data Aggregation and Sampling Chapter 6

[99]

In addition, we may encounter a very special behavior when dealing with
aggregation across columns with a NULL value. The entire row (if one column
has NULL as a value in the row) will be ignored. To avoid this, we can use
coalesce(...) to assign a default value when the column value is NULL. See the
following example:

 -- Create a table t for testing
 > CREATE TABLE t (val1 int, val2 int);
 > INSERT INTO TABLE t VALUES (1, 2),(null,2),(2,3);
 No rows affected (0.138 seconds)

 -- Check the rows in the table created
 > SELECT * FROM t;
 +---------+---------+
 | t.val1 | t.val2 |
 +---------+---------+
 | 1 | 2 |
 | NULL | 2 |
 | 2 | 3 |
 +---------+---------+
 3 rows selected (0.069 seconds)

 -- The 2nd row (NULL, 2) is ignored when doing sum(val1 + val2)
 > SELECT sum(val1), sum(val1 + val2) FROM t;
 +------+------+
 | _c0 | _c1 |
 +------+------+
 | 3 | 8 |
 +------+------+
 1 row selected (57.775 seconds)

 > SELECT
 > sum(coalesce(val1,0)),
 > sum(coalesce(val1,0) + val2)
 > FROM t;
 +------+------+
 | _c0 | _c1 |
 +------+------+
 | 3 | 10 |
 +------+------+
 1 row selected (69.967 seconds)

Data Aggregation and Sampling Chapter 6

[100]

Aggregate functions can also be used with the DISTINCT keyword to aggregate6.
on unique values:

 > SELECT
 > count(DISTINCT gender_age.gender) as gender_uni_cnt,
 > count(DISTINCT name) as name_uni_cnt
 > FROM employee;
 +-----------------+---------------+
 | gender_uni_cnt | name_uni_cnt |
 +-----------------+---------------+
 | 2 | 5 |
 +-----------------+---------------+
 1 row selected (35.935 seconds)

When we use COUNT and DISTINCT together, it always ignores the setting (such as
mapred.reduce.tasks = 20) for the number of reducers used and may use only one
reducer. In this case, the single reducer becomes the bottleneck when processing large
volumes of data. The workaround is to use a subquery as follows:

-- May trigger single reducer during the whole processing
> SELECT count(distinct gender_age.gender) as gender_uni_cnt FROM employee;

-- Use subquery to select unique value before aggregations
> SELECT
> count(*) as gender_uni_cnt
> FROM (
> SELECT DISTINCT gender_age.gender FROM employee
) a;

In this case, the first stage of the query implementing DISTINCT can use more than one
reducer. In the second stage, the mapper will have less output just for the COUNT purpose,
since the data is already unique after implementing DISTINCT. As a result, the reducer will
not be overloaded.

Sometimes, we may need to find the max. or min. value of particular columns as well as
other columns, for example, to answer this question: who are the oldest males and females
with ages in the employee table? To achieve this, we can also use max/min on a struct as
follows, instead of using subqueries/window functions:

> SELECT gender_age.gender,
> max(struct(gender_age.age, name)).col1 as age,
> max(struct(gender_age.age, name)).col2 as name
> FROM employee
> GROUP BY gender_age.gender;
+-------------------+-----+------+
| gender_age.gender | age | name |

Data Aggregation and Sampling Chapter 6

[101]

+-------------------+-----+------+
| Female | 57 | Lucy |
| Male | 35 | Will |
+-------------------+-----+------+
2 rows selected (26.896 seconds)

Although it still needs to use the GROUP BY clause, this job is more efficient than a regular
GROUP BY or subquery, as it only triggers one job.

The hive.map.aggr property controls aggregations in the map task. The
default value for this setting is true, so Hive will do the first-level
aggregation directly in the map task for better performance, but consume
more memory. Turn it off if you run out of memory in the map phase.

Enhanced aggregation
Hive offers enhanced aggregation by using the GROUPING SETS, CUBE, and ROLLUP
keywords.

Grouping sets
GROUPING SETS implements advanced multiple GROUP BY operations against the same set
of data. Actually, GROUPING SETS are a shorthand way of connecting several GROUP BY
result sets with UNION ALL. The GROUPING SETS keyword completes all processes in a
single stage of the job, which is more efficient. A blank set () in the GROUPING SETS clause
calculates the overall aggregation. The following are a few examples to show the
equivalence of GROUPING SETS. For better understanding, we can say that the outer level
(brace) of GROUPING SETS defines what data UNION ALL is to be implemented. The inner
level (brace) defines what GROUP BY data is to be implemented in each UNION ALL.

Grouping set with one element of column pairs:1.

 SELECT
 name, start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY name, start_date
 GROUPING SETS((name, start_date));
 --||-- equals to
 SELECT
 name, start_date, count(sin_number) as sin_cnt
 FROM employee_hr

Data Aggregation and Sampling Chapter 6

[102]

 GROUP BY name, start_date;
 +---------+------------+---------+
 | name | start_date | sin_cnt |
 +---------+------------+---------+
 | Lucy | 2010-01-03 | 1 |
 | Michael | 2014-01-29 | 1 |
 | Steven | 2012-11-03 | 1 |
 | Will | 2013-10-02 | 1 |
 +---------+------------+---------+
 4 rows selected (26.3 seconds)

Grouping set with two elements:2.

 SELECT
 name, start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY name, start_date
 GROUPING SETS(name, start_date);
 --||-- equals to
 SELECT
 name, null as start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY name
 UNION ALL
 SELECT
 null as name, start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY start_date;
 ----------+------------+---------+
 | name | start_date | sin_cnt |
 +---------+------------+---------+
 | NULL | 2010-01-03 | 1 |
 | NULL | 2012-11-03 | 1 |
 | NULL | 2013-10-02 | 1 |
 | NULL | 2014-01-29 | 1 |
 | Lucy | NULL | 1 |
 | Michael | NULL | 1 |
 | Steven | NULL | 1 |
 | Will | NULL | 1 |
 +---------+------------+---------+
 8 rows selected (22.658 seconds)

Grouping set with two elements, a column pair, and a column:3.

 SELECT
 name, start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY name, start_date

Data Aggregation and Sampling Chapter 6

[103]

 GROUPING SETS((name, start_date), name);
 --||-- equals to
 SELECT
 name, start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY name, start_date
 UNION ALL
 SELECT
 name, null as start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY name;
 +---------+------------+---------+
 | name | start_date | sin_cnt |
 +---------+------------+---------+
 | Lucy | NULL | 1 |
 | Lucy | 2010-01-03 | 1 |
 | Michael | NULL | 1 |
 | Michael | 2014-01-29 | 1 |
 | Steven | NULL | 1 |
 | Steven | 2012-11-03 | 1 |
 | Will | NULL | 1 |
 | Will | 2013-10-02 | 1 |
 +---------+------------+---------+
 8 rows selected (22.503 seconds)

Grouping set with four elements, including all combinations of columns:4.

 SELECT
 name, start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY name, start_date
 GROUPING SETS((name, start_date), name, start_date, ());
 --||-- equals to
 SELECT
 name, start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY name, start_date
 UNION ALL
 SELECT
 name, null as start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY name
 UNION ALL
 SELECT
 null as name, start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 GROUP BY start_date
 UNION ALL

Data Aggregation and Sampling Chapter 6

[104]

 SELECT
 null as name, null as start_date, count(sin_number) as sin_cnt
 FROM employee_hr
 +---------+------------+---------+
 | name | start_date | sin_cnt |
 +---------+------------+---------+
 | NULL | NULL | 4 |
 | NULL | 2010-01-03 | 1 |
 | NULL | 2012-11-03 | 1 |
 | NULL | 2013-10-02 | 1 |
 | NULL | 2014-01-29 | 1 |
 | Lucy | NULL | 1 |
 | Lucy | 2010-01-03 | 1 |
 | Michael | NULL | 1 |
 | Michael | 2014-01-29 | 1 |
 | Steven | NULL | 1 |
 | Steven | 2012-11-03 | 1 |
 | Will | NULL | 1 |
 | Will | 2013-10-02 | 1 |
 +---------+------------+---------+
 13 rows selected (24.916 seconds)

Rollup and Cube
The ROLLUP statement enables a SELECT statement to calculate multiple levels of
aggregations across a specified group of dimensions. The ROLLUP statement is a simple
extension of the GROUP BY clause with high efficiency and minimal overhead for a query.
Compared to GROUPING SETS, which creates specified levels of aggregations, ROLLUP
creates n+1 levels of aggregations, where n is the number of grouping columns. First, it
calculates the standard aggregate values specified in the GROUP BY clause. Then, it creates
higher-level subtotals, moving from right to left through the list of combinations of
grouping columns. For example, GROUP BY a,b,c WITH ROLLUP is equivalent to GROUP
BY a,b,c GROUPING SETS ((a,b,c),(a,b),(a),()).

The CUBE statement takes a specified set of grouping columns and creates aggregations for
all of their possible combinations. If n columns are specified for CUBE, there will be 2n

combinations of aggregations returned. For example, GROUP BY a,b,c WITH CUBE is
equivalent to GROUP BY a,b,c GROUPING SETS
((a,b,c),(a,b),(b,c),(a,c),(a),(b),(c),()).

Data Aggregation and Sampling Chapter 6

[105]

The GROUPING__ID function works as an extension to distinguish entire rows from each
other. It returns the decimal equivalent of the BIT vector for each column specified after
GROUP BY. The returned decimal number is converted from a binary of ones and zeros,
which represents whether the column is aggregated (0) in the row or not (1). On the other
hand, the grouping(...) function also indicates whether a column in a GROUP BY clause
is aggregated or not by returning the binary of 1 or 0 directly. In the following example, the
order of columns starts from counting the nearest column (such as name) from GROUP BY.
The first row in the result set indicates that none of the columns are being used in GROUP
BY.

Compare the following example with the last example in the GROUPING SETS section for a
better understanding of GROUPING_ID and grouping(...):

SELECT
name, start_date, count(employee_id) as emp_id_cnt,
GROUPING__ID,
grouping(name) as gp_name,
grouping(start_date) as gp_sd
FROM employee_hr
GROUP BY name, start_date
WITH CUBE ORDER BY name, start_date;
+---------+------------+------------+-----+---------+-------+
| name | start_date | emp_id_cnt | gid | gp_name | gp_sd |
+---------+------------+------------+-----+---------+-------+
NULL	NULL	4	3	1	1
NULL	2010-01-03	1	2	1	0
NULL	2012-11-03	1	2	1	0
NULL	2013-10-02	1	2	1	0
NULL	2014-01-29	1	2	1	0
Lucy	NULL	1	1	0	1
Lucy	2010-01-03	1	0	0	0
Michael	NULL	1	1	0	1
Michael	2014-01-29	1	0	0	0
Steven	NULL	1	1	0	1
Steven	2012-11-03	1	0	0	0
Will	NULL	1	1	0	1
Will	2013-10-02	1	0	0	0
+---------+------------+------------+-----+---------+-------+
13 rows selected (55.507 seconds)

Data Aggregation and Sampling Chapter 6

[106]

Aggregation condition
Since v0.7.0, HAVING has been added to support the conditional filtering of aggregation
results directly. By using HAVING, we can avoid using a subquery after the GROUP BY
statement. See the following example:

> SELECT
> gender_age.age
> FROM employee
> GROUP BY gender_age.age
> HAVING count(*)=1;
+----------------+
| gender_age.age |
+----------------+
| 27 |
| 30 |
| 35 |
| 57 |
+----------------+
4 rows selected (25.829 seconds)

> SELECT
> gender_age.age,
> count(*) as cnt -- Support use column alias in HAVING, like ORDER BY
> FROM employee
> GROUP BY gender_age.age HAVING cnt=1;
+----------------+-----+
| gender_age.age | cnt |
+----------------+-----+
| 27 | 1 |
| 30 | 1 |
| 35 | 1 |
| 57 | 1 |
+----------------+-----+
4 rows selected (25.804 seconds)

HAVING supports filtering on regular columns too. However, it is
recommended to use such a filter type after a WHERE clause rather than
HAVING for better performance.

Data Aggregation and Sampling Chapter 6

[107]

If we do not use HAVING, we can use a subquery instead as follows:

> SELECT
> a.age
> FROM (
> SELECT count(*) as cnt, gender_age.age
> FROM employee GROUP BY gender_age.age
>) a WHERE a.cnt <= 1;
+--------+
| a.age |
+--------+
| 57 |
| 27 |
| 35 |
+--------+
3 rows selected (87.298 seconds)

Window functions
Window functions, available since Hive v0.11.0, are a special group of functions that scan
multiple input rows to compute each output value. Window functions are usually used
with OVER, PARTITION BY, ORDER BY, and the windowing specification. Different from the
regular aggregate functions used with the GROUP BY clause, and limited to one result value
per group, window functions operate on windows where the input rows are ordered and
grouped using flexible conditions expressed through an OVER and PARTITION clause.
Window functions give aggregate results, but they do not group the result set. They return
the group value multiple times with each record. Window functions offer great flexibility
and functionalities compared term the regular GROUP BY clause and make special
aggregations by HQL easier and more powerful. The syntax for a window function is as
follows:

Function (arg1,..., argn) OVER ([PARTITION BY <...>] [ORDER BY <....>]
[<window_expression>])

Function (arg1,..., argn) can be any function in the following four categories:

Aggregate Functions: Regular aggregate functions, such as sum(...),
and max(...)
Sort Functions: Functions for sorting data, such as rank(...),
androw_number(...)
Analytics Functions: Functions for statistics and comparisons, such
as lead(...), lag(...), and first_value(...)

Data Aggregation and Sampling Chapter 6

[108]

The OVER [PARTITION BY <...>] clause is similar to the GROUP BY clause. It divides the
rows into groups containing identical values in one or more partitions by columns. These
logical groups are known as partitions, which is not the same term as used for partition
tables. Omitting the PARTITION BY statement applies the operation to all the rows in the
table.

The [ORDER BY <....>] clause is the same as the regular ORDER BY clause. It makes sure
the rows produced by the PARTITION BY clause are ordered by specifications, such as
ascending or descending order.

Next, we'll learn more details of each category of window functions through examples.

Window aggregate functions
Using regular aggregate functions in window functions brings more flexibility than GROUP
BY, which requires all grouped columns in the select list. Since Hive v2.2.0, DISTINCT has
been supported for use with aggregate functions in window functions:

Prepare the table and data for demonstration:1.

 > CREATE TABLE IF NOT EXISTS employee_contract (
 > name string,
 > dept_num int,
 > employee_id int,
 > salary int,
 > type string,
 > start_date date
 >)
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY '|'
 > STORED as TEXTFILE;
 No rows affected (0.282 seconds)

 > LOAD DATD INPATH '/tmp/hivedemo/data/employee_contract.txt'
 > OVERWRITE INTO TABLE employee_contract;
 No rows affected (0.48 seconds)

The regular aggregations are used as window functions:2.

 > SELECT
 > name,
 > dept_num as deptno,
 > salary,
 > count(*) OVER (PARTITION BY dept_num) as cnt,

Data Aggregation and Sampling Chapter 6

[109]

 > count(distinct dept_num) OVER (PARTITION BY dept_num) as dcnt,
 > sum(salary) OVER(PARTITION BY dept_num ORDER BY dept_num) as
 sum1,
 > sum(salary) OVER(ORDER BY dept_num) as sum2,
 > sum(salary) OVER(ORDER BY dept_num, name) as sum3
 > FROM employee_contract
 > ORDER BY deptno, name;
 +---------+--------+--------+-----+-----+-------+-------+-------+
 | name | deptno | salary | cnt | dcnt| sum1 | sum2 | sum3 |
 +---------+--------+--------+-----+-----+-------+-------+-------+
 | Lucy | 1000 | 5500 | 5 | 1 | 24900 | 24900 | 5500 |
 | Michael | 1000 | 5000 | 5 | 1 | 24900 | 24900 | 10500 |
 | Steven | 1000 | 6400 | 5 | 1 | 24900 | 24900 | 16900 |
 | Wendy | 1000 | 4000 | 5 | 1 | 24900 | 24900 | 20900 |
 | Will | 1000 | 4000 | 5 | 1 | 24900 | 24900 | 24900 |
 | Jess | 1001 | 6000 | 3 | 1 | 17400 | 42300 | 30900 |
 | Lily | 1001 | 5000 | 3 | 1 | 17400 | 42300 | 35900 |
 | Mike | 1001 | 6400 | 3 | 1 | 17400 | 42300 | 42300 |
 | Richard | 1002 | 8000 | 3 | 1 | 20500 | 62800 | 50300 |
 | Wei | 1002 | 7000 | 3 | 1 | 20500 | 62800 | 57300 |
 | Yun | 1002 | 5500 | 3 | 1 | 20500 | 62800 | 62800 |
 +---------+--------+--------+-----+-----+-------+-------+-------+
 11 rows selected (111.856 seconds)

Window sort functions
Window sort functions provide the sorting data information, such as row number and rank,
within specific groups as part of the data returned. The most commonly used sort functions
are as follows:

row_number: Assigns a unique sequence number starting from 1 to each row,
according to the partition and order specification.
rank: Ranks items in a group, such as finding the top N rows for specific
conditions.
dense_rank: Similar to rank, but leaves no gaps in the ranking sequence when
there are ties. For example, if we rank a match using dense_rank and have two
players tied for second place, we would see that the two players were both in
second place and that the next person is ranked third. However,
the rank function would rank two people in second place, but the next person
would be in fourth place.

Data Aggregation and Sampling Chapter 6

[110]

percent_rank: Uses rank values rather than row counts in its numerator
as (current rank - 1)/(total number of rows - 1). Therefore, it returns the percentage
rank of a value relative to a group of values.
ntile: Divides an ordered dataset into a number of buckets and assigns an
appropriate bucket number to each row. It can be used to divide rows into equal
sets and assign a number to each row.

Here are some examples using window sort functions in HQL:

> SELECT
> name,
> dept_num as deptno,
> salary,
> row_number() OVER () as rnum, -- sequence in orginal table
> rank() OVER (PARTITION BY dept_num ORDER BY salary) as rk,
> dense_rank() OVER (PARTITION BY dept_num ORDER BY salary) as drk,
> percent_rank() OVER(PARTITION BY dept_num ORDER BY salary) as prk,
> ntile(4) OVER(PARTITION BY dept_num ORDER BY salary) as ntile
> FROM employee_contract
> ORDER BY deptno, name;
+---------+--------+--------+------+----+-----+------+-------+
| name | deptno | salary | rnum | rk | drk | prk | ntile |
+---------+--------+--------+------+----+-----+------+-------+
| Lucy | 1000 | 5500 | 7 | 4 | 3 | 0.75 | 3 |
| Michael | 1000 | 5000 | 11 | 3 | 2 | 0.5 | 2 |
| Steven | 1000 | 6400 | 8 | 5 | 4 | 1.0 | 4 |
| Wendy | 1000 | 4000 | 9 | 1 | 1 | 0.0 | 1 |
| Will | 1000 | 4000 | 10 | 1 | 1 | 0.0 | 1 |
| Jess | 1001 | 6000 | 5 | 2 | 2 | 0.5 | 2 |
| Lily | 1001 | 5000 | 6 | 1 | 1 | 0.0 | 1 |
| Mike | 1001 | 6400 | 4 | 3 | 3 | 1.0 | 3 |
| Richard | 1002 | 8000 | 1 | 3 | 3 | 1.0 | 3 |
| Wei | 1002 | 7000 | 3 | 2 | 2 | 0.5 | 2 |
| Yun | 1002 | 5500 | 2 | 1 | 1 | 0.0 | 1 |
+---------+--------+--------+------+----+-----+------+-------+
11 rows selected (80.052 seconds)

Since Hive v2.1.0, we have been able to use aggregate functions in the OVER clause as
follows:

> SELECT
> dept_num,
> rank() OVER (PARTITION BY dept_num ORDER BY sum(salary)) as rk
> FROM employee_contract
> GROUP BY dept_num;
+----------+----+

Data Aggregation and Sampling Chapter 6

[111]

| dept_num | rk |
+----------+----+
1000	1
1001	1
1002	1
+----------+----+
3 rows selected (54.43 seconds)

Window analytics functions
Window analytics functions provide extended data analytics, such as getting lag, lead, last,
or first rows in the ordered set. The most commonly used analytics functions are as follows:

cume_dist: Computes the number of rows whose value is smaller than or equal
to, the value of the total number of rows divided by the current row, such
as (number of rows ≤ current row)/(total number of rows).
lead: This function, lead(value_expr[,offset[,default]]), is used to
return data from the next row. The number (offset) of rows to lead can optionally
be specified, one is by default. The function returns [,default] or NULL when
the default is not specified. In addition, the lead for the current row extends
beyond the end of the window.
lag: This function, lag(value_expr[,offset[,default]]), is used to access
data from a previous row. The number (offset) of rows to lag can optionally be
specified, one is by default. The function returns [,default] or NULL when the
default is not specified. In addition, the lag for the current row extends beyond
the end of the window.
first_value: It returns the first result from an ordered set.
last_value: It returns the last result from an ordered set.

Here are some examples using window analytics functions in HQL:

> SELECT
> name,
> dept_num as deptno,
> salary,
> cume_dist() OVER (PARTITION BY dept_num ORDER BY salary) as cume,
> lead(salary, 2) OVER (PARTITION BY dept_num ORDER BY salary) as lead,
> lag(salary, 2, 0) OVER (PARTITION BY dept_num ORDER BY salary) as lag,
> first_value(salary) OVER (PARTITION BY dept_num ORDER BY salary) as fval,
> last_value(salary) OVER (PARTITION BY dept_num ORDER BY salary) as lval,
> last_value(salary) OVER (PARTITION BY dept_num ORDER BY salary RANGE
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as lval2

Data Aggregation and Sampling Chapter 6

[112]

> FROM employee_contract
> ORDER BY deptno, salary;
+--------+------+--------+------+------+-----+------+------+-------+
| name |deptno| salary | cume | lead | lag | fval |lvalue|lvalue2|
+--------+------+--------+------+------+-----+------+------+-------+
| Will | 1000 | 4000 | 0.4 | 5500 | 0 | 4000 | 4000 | 6400 |
| Wendy | 1000 | 4000 | 0.4 | 5000 | 0 | 4000 | 4000 | 6400 |
| Michael| 1000 | 5000 | 0.6 | 6400 | 4000| 4000 | 5000 | 6400 |
| Lucy | 1000 | 5500 | 0.8 | NULL | 4000| 4000 | 5500 | 6400 |
| Steven | 1000 | 6400 | 1.0 | NULL | 5000| 4000 | 6400 | 6400 |
| Lily | 1001 | 5000 | 0.33 | 6400 | 0 | 5000 | 5000 | 6400 |
| Jess | 1001 | 6000 | 0.67 | NULL | 0 | 5000 | 6000 | 6400 |
| Mike | 1001 | 6400 | 1.0 | NULL | 5000| 5000 | 6400 | 6400 |
| Yun | 1002 | 5500 | 0.33 | 8000 | 0 | 5500 | 5500 | 8000 |
| Wei | 1002 | 7000 | 0.67 | NULL | 0 | 5500 | 7000 | 8000 |
| Richard| 1002 | 8000 | 1.0 | NULL | 5500| 5500 | 8000 | 8000 |
+--------+------+--------+------+------+-----+------+------+-------+
11 rows selected (55.203 seconds)

For last_value, the result (the lval column) is a little bit unexpected. This is because the
default window clause (introduced in the next section) used is RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW, which, in the example, means the current
row will always be the last value. Changing the windowing clause to RANGE BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING gives us the expected result (see
the lval2 column).

Window expression
[<window_expression>] is used to further sub-partition the result and apply the window
functions. There are two types of windows: Row Type and Range Type.

According to the JIRA at https:/ ​/​issues. ​apache. ​org/ ​jira/ ​browse/
HIVE- ​4797, the rank(...), ntile(...), dense_rank(...),
cume_dist(...), percent_rank(...), lead(...), lag(...), and
row_number(...) functions do not support being used with a window
expression yet.

For row type windows, the definition is in terms of row numbers before or after the current
row. The general syntax of the row window clause is as follows:

ROWS BETWEEN <start_expr> AND <end_expr>

https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797
https://issues.apache.org/jira/browse/HIVE-4797

Data Aggregation and Sampling Chapter 6

[113]

<start_expr> can be any one of the following:

UNBOUNDED PRECEDING

CURRENT ROW

N PRECEDING or FOLLOWING

<end_expr> can be any one of the following:

UNBOUNDED FOLLOWING

CURRENT ROW

N PRECEDING or FOLLOWING

The following covers more details about using window expressions and their combinations:

BETWEEN ... AND: Use it to specify the start point and end point for the window.
The first expression (before AND) defines the start point and the second
expression (after AND) defines the endpoint. If we omit BETWEEN...AND (such as
ROWS N PRECEDING or ROWS UNBOUNDED PRECEDING), Hive considers it as the
start point, and the endpoint defaults to the current row (see the win6 and win7
columns in the following examples).
N PRECEDING or FOLLOWING: This indicates N rows before or after the current
row.
UNBOUNDED PRECEDING: This indicates the window starts at the first row of the
partition. This is the start point specification and cannot be used as an endpoint
specification.
UNBOUNDED FOLLOWING: This indicates the window ends at the last row of the
partition. This is the endpoint specification and cannot be used as a start point
specification.
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING: This indicates the first
and last row for every row, meaning all rows in the table (see win14 column in
the upcoming examples).
CURRENT ROW: As a start point, CURRENT ROW specifies that the window begins
at the current row or value, depending on whether we have specified ROW or
RANGE (RANGE is introduced later in this chapter). In this case, the endpoint
cannot be M PRECEDING. As an endpoint, CURRENT ROW specifies that the
window ends at the current row or value, depending on whether we have
specified ROW or RANGE. In this case, the start point cannot be N FOLLOWING.

Data Aggregation and Sampling Chapter 6

[114]

The following is a diagram that can help us understand the preceding definitions more
clearly:

Window expression definitions

The following examples implement the window expressions in row type:

-- Preceding and Following
> SELECT
> name, dept_num as dno, salary as sal,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) win1,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN 2 PRECEDING AND UNBOUNDED FOLLOWING) win2,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN 1 PRECEDING AND 2 FOLLOWING) win3,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN 2 PRECEDING AND 1 PRECEDING) win4,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN 1 FOLLOWING AND 2 FOLLOWING) win5,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS 2 PRECEDING) win6, -- FOLLOWING does not work in this way
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS UNBOUNDED PRECEDING) win7
> FROM employee_contract
> ORDER BY dno, name;
+---------+------+------+------+------+------+------+------+------+------+
| name | dno | sal | win1 | win2 | win3 | win4 | win5 | win6 | win7 |
+---------+------+------+------+------+------+------+------+------+------+
| Lucy | 1000 | 5500 | 5500 | 6400 | 6400 | NULL | 6400 | 5500 | 5500 |
| Michael | 1000 | 5000 | 5500 | 6400 | 6400 | 5500 | 6400 | 5500 | 5500 |
| Steven | 1000 | 6400 | 6400 | 6400 | 6400 | 5500 | 4000 | 6400 | 6400 |
| Wendy | 1000 | 4000 | 6400 | 6400 | 6400 | 6400 | 4000 | 6400 | 6400 |

Data Aggregation and Sampling Chapter 6

[115]

Will	1000	4000	6400	6400	4000	6400	NULL	6400	6400
Jess	1001	6000	6000	6400	6400	NULL	6400	6000	6000
Lily	1001	5000	6000	6400	6400	6000	6400	6000	6000
Mike	1001	6400	6400	6400	6400	6000	NULL	6400	6400
Richard	1002	8000	8000	8000	8000	NULL	7000	8000	8000
Wei	1002	7000	8000	8000	8000	8000	5500	8000	8000
Yun	1002	5500	8000	8000	7000	8000	NULL	8000	8000
+---------+------+------+------+------+------+------+------+------+------+
11 rows selected (55.885 seconds)

-- Current and Unbounded
> SELECT
> name, dept_num as dno, salary as sal,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN CURRENT ROW AND CURRENT ROW) win8,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING) win9,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) win10,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) win11,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) win12,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING) win13,
> max(salary) OVER (PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) win14
> FROM employee_contract
> ORDER BY dno, name;
+-------+----+------+------+------+-------+-------+-------+-------+-------+
|name |dno | sal | win8 | win9 | win10 | win11 | win12 | win13 | win14 |
+-------+----+------+------+------+-------+-------+-------+-------+-------+
|Lucy |1000| 5500 | 5500 | 5500 | 6400 | NULL | 5500 | 5500 | 6400 |
|Michael|1000| 5000 | 5000 | 6400 | 6400 | 5500 | 5500 | 6400 | 6400 |
|Steven |1000| 6400 | 6400 | 6400 | 6400 | 5500 | 6400 | 6400 | 6400 |
|Wendy |1000| 4000 | 4000 | 4000 | 4000 | 6400 | 6400 | 6400 | 6400 |
|Will |1000| 4000 | 4000 | 4000 | 4000 | 6400 | 6400 | 6400 | 6400 |
|Jess |1001| 6000 | 6000 | 6000 | 6400 | NULL | 6000 | 6000 | 6400 |
|Lily |1001| 5000 | 5000 | 6400 | 6400 | 6000 | 6000 | 6400 | 6400 |
|Mike |1001| 6400 | 6400 | 6400 | 6400 | 6000 | 6400 | 6400 | 6400 |
|Richard|1002| 8000 | 8000 | 8000 | 8000 | NULL | 8000 | 8000 | 8000 |
|Wei |1002| 7000 | 7000 | 7000 | 7000 | 8000 | 8000 | 8000 | 8000 |
|Yun |1002| 5500 | 5500 | 5500 | 5500 | 8000 | 8000 | 8000 | 8000 |
+-------+----+------+------+------+-------+-------+-------+-------+-------+
11 rows selected (53.754 seconds)

Data Aggregation and Sampling Chapter 6

[116]

In addition, windows can be defined in a separate window clause or referred to by other
windows, as follows:

> SELECT
> name, dept_num, salary,
> max(salary) OVER w1 as win1,
> max(salary) OVER w2 as win2,
> max(salary) OVER w3 as win3
> FROM employee_contract
> WINDOW w1 as (
> PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
>),
> w2 as w3,
> w3 as (
> PARTITION BY dept_num ORDER BY name
> ROWS BETWEEN 1 PRECEDING AND 2 FOLLOWING
>);
+---------+----------+--------+------+------+------+
| name | dept_num | salary | win1 | win2 | win3 |
+---------+----------+--------+------+------+------+
| Lucy | 1000 | 5500 | 5500 | 6400 | 6400 |
| Michael | 1000 | 5000 | 5500 | 6400 | 6400 |
| Steven | 1000 | 6400 | 6400 | 6400 | 6400 |
| Wendy | 1000 | 4000 | 6400 | 6400 | 6400 |
| Will | 1000 | 4000 | 6400 | 4000 | 4000 |
| Jess | 1001 | 6000 | 6000 | 6400 | 6400 |
| Lily | 1001 | 5000 | 6000 | 6400 | 6400 |
| Mike | 1001 | 6400 | 6400 | 6400 | 6400 |
| Richard | 1002 | 8000 | 8000 | 8000 | 8000 |
| Wei | 1002 | 7000 | 8000 | 8000 | 8000 |
| Yun | 1002 | 5500 | 8000 | 7000 | 7000 |
+---------+----------+--------+------+------+------+
11 rows selected (57.204 seconds)

Data Aggregation and Sampling Chapter 6

[117]

Compared to row type windows, which are in terms of rows, the range type windows are
in terms of values in the window expression's specified range. For example,
the max(salary) RANGE BETWEEN 500 PRECEDING AND 1000 FOLLOWING statement
will calculate max(salary) within the partition by the distance from the current row’s
value of - 500 to + 1000. If the current row's salary is 4,000, this max(salary) will include
rows whose salaries range from 3,500 to 5,000 within each dept_num-specified partition:

> SELECT
> dept_num, start_date, name, salary,
> max(salary) OVER (PARTITION BY dept_num ORDER BY salary
> RANGE BETWEEN 500 PRECEDING AND 1000 FOLLOWING) win1,
> max(salary) OVER (PARTITION BY dept_num ORDER BY salary
> RANGE BETWEEN 500 PRECEDING AND CURRENT ROW) win2
> FROM employee_contract
> order by dept_num, start_date;
+----------+------------+---------+--------+------+------+
| dept_num | start_date | name | salary | win1 | win2 |
+----------+------------+---------+--------+------+------+
| 1000 | 2010-01-03 | Lucy | 5500 | 6400 | 5500 |
| 1000 | 2012-11-03 | Steven | 6400 | 6400 | 6400 |
| 1000 | 2013-10-02 | Will | 4000 | 5000 | 4000 |
| 1000 | 2014-01-29 | Michael | 5000 | 5500 | 5000 |
| 1000 | 2014-10-02 | Wendy | 4000 | 5000 | 4000 |
| 1001 | 2013-11-03 | Mike | 6400 | 6400 | 6400 |
| 1001 | 2014-11-29 | Lily | 5000 | 6000 | 5000 |
| 1001 | 2014-12-02 | Jess | 6000 | 6400 | 6000 |
| 1002 | 2010-04-03 | Wei | 7000 | 8000 | 7000 |
| 1002 | 2013-09-01 | Richard | 8000 | 8000 | 8000 |
| 1002 | 2014-01-29 | Yun | 5500 | 5500 | 5500 |
+----------+------------+---------+--------+------+------+
11 rows selected (60.784 seconds)

If we omit the window expression clause entirely, the default window
specification is RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW. When both ORDER BY and WINDOW expression clauses are
missing, the window specification defaults to ROW BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING.

Data Aggregation and Sampling Chapter 6

[118]

Sampling
When the data volume is extra large, we may need to find a subset of data to speed up data
analysis. This is sampling, a technique used to identify and analyze a subset of data in
order to discover patterns and trends in the whole dataset. In HQL, there are three ways of
sampling data: random sampling, bucket table sampling, and block sampling.

Random sampling
Random sampling uses the rand() function and LIMIT keyword to get the sampling of
data, as shown in the following example. The DISTRIBUTE and SORT keywords are used
here to make sure the data is also randomly distributed among mappers and reducers
efficiently. The ORDER BY rand() statement can also achieve the same purpose, but the
performance is not good:

> SELECT name FROM employee_hr
> DISTRIBUTE BY rand() SORT BY rand() LIMIT 2;
+--------+
| name |
+--------+
| Will |
| Steven |
+--------+
2 rows selected (52.399 seconds)

Bucket table sampling
This is a special sampling method, optimized for bucket tables, as shown in the following
example. The SELECT clause specifies the columns to sample data from. The rand()
function can also be used when sampling entire rows. If the sample column is also the
CLUSTERED BY column, the sample will be more efficient:

-- Sampling based on the whole row
> SELECT name FROM employee_trans
> TABLESAMPLE(BUCKET 1 OUT OF 2 ON rand()) a;
+--------+
| name |
+--------+
| Steven |
+--------+
1 row selected (0.129 seconds)

Data Aggregation and Sampling Chapter 6

[119]

-- Sampling based on the bucket column, which is efficient
> SELECT name FROM employee_trans
> TABLESAMPLE(BUCKET 1 OUT OF 2 ON emp_id) a;
+---------+
| name |
+---------+
| Lucy |
| Steven |
| Michael |
+---------+
3 rows selected (0.136 seconds)

Block sampling
This type of sampling allows a query to randomly pick up n rows of data, n percentage of
the data size, or n bytes of data. The sampling granularity is the HDFS block size. Refer to
the following examples:

-- Sample by number of rows
> SELECT name
> FROM employee TABLESAMPLE(1 ROWS) a;
+----------+
| name |
+----------+
| Michael |
+----------+
1 rows selected (0.075 seconds)

-- Sample by percentage of data size
> SELECT name
> FROM employee TABLESAMPLE(50 PERCENT) a;
+----------+
| name |
+----------+
| Michael |
| Will |
+----------+
2 rows selected (0.041 seconds)

-- Sample by data size
-- Support b/B, k/K, m/M, g/G
> SELECT name FROM employee TABLESAMPLE(1B) a;
+----------+
| name |
+----------+
| Michael |

Data Aggregation and Sampling Chapter 6

[120]

+----------+
1 rows selected (0.075 seconds)

Summary
In this chapter, we covered how to aggregate data using basic aggregation functions. Then,
we introduced advanced aggregations with GROUPING SETS, ROLLUP, and CUBE, as well as
aggregation conditions using HAVING. We also covered the various window functions. At
the end of the chapter, we introduced three ways of sampling data. After going through
this chapter, you should be able to do basic and advanced aggregations and data sampling
in HQL. In the next chapter, we'll talk about performance considerations in Hive.

7
Performance Considerations

Although Hive is built to deal with big data processing, we still cannot ignore the
importance of performance. Most of the time, a better query can rely on the smart query
optimizer to find the best execution strategy, as well as the default settings and best
practices. However, experienced users should learn more about the theory and practice of
performance tuning, especially when working on a performance-sensitive project or
environment.

In this chapter, we will start using utilities available in HQL to find potential issues causing
poor performance. Then, we introduce the best practices for performance considerations in
the areas of design, file format, compression, storage, queries, and jobs. In this chapter, we
will cover the following topics:

Performance utilities
Design optimization
Data optimization
Job optimization

Performance utilities
HQL provides the EXPLAIN and ANALYZE statements, which can be used as utilities to
check and identify the performance of queries. In addition, Hive logs contain enough
detailed information for performance investigation and troubleshooting.

Performance Considerations Chapter 7

[122]

EXPLAIN statement
Hive provides an EXPLAIN statement to return a query execution plan without running the
query. We can use it to analyze queries if we have concerns about their performance. The
EXPLAIN statement helps us to see the difference between two or more queries for the same
purpose. The syntax for it is as follows:

EXPLAIN [FORMATTED|EXTENDED|DEPENDENCY|AUTHORIZATION] hql_query

The following keywords can be used:

FORMATTED: This provides a formatted JSON version of the query plan.
EXTENDED: This provides additional information for the operators in the plan,
such as file pathname.
DEPENDENCY: This provides a JSON format output that contains a list of tables
and partitions that the query depends on. It has been available since Hive v0.10.0
AUTHORIZATION: This lists all entities needed to be authorized, including input
and output to run the query, and authorization failure, if any. It has been
available since Hive v0.14.0.

A typical query plan contains the following three sections. We will also have a look at an
example later:

Abstract Syntax Tree (AST): Hive uses a parser generator called ANTLR (see
http:/​/​www. ​antlr. ​org/ ​) to automatically generate a tree syntax for HQL
Stage Dependencies: This lists all dependencies and the number of stages used
to run the query
Stage Plans: It contains important information, such as operators and sort orders,
for running the job

The following is what a typical query plan looks like. From the following example, we can
see that the AST section is shown as a Map/Reduce operator tree. In the STAGE
DEPENDENCIES section, both Stage-0 and Stage-1 are independent root stages. In the
STAGE PLANS section, Stage-1 has one map and reduce referred to by the Map Operator
Tree and Reduce Operator Tree. Inside each Map/Reduce Operator Tree section, all
operators corresponding to the query keywords, as well as expressions and aggregations,
are listed. The Stage-0 stage does not have map and reduce. It is just a Fetch operation:

> EXPLAIN SELECT gender_age.gender, count(*)
> FROM employee_partitioned WHERE year=2018
> GROUP BY gender_age.gender LIMIT 2;

http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/
http://www.antlr.org/

Performance Considerations Chapter 7

[123]

+--+
| Explain |
+--+
| STAGE DEPENDENCIES: |
| Stage-1 is a root stage |
| Stage-0 depends on stages: Stage-1 |
| |
| STAGE PLANS: |
| Stage: Stage-1 |
| Map Reduce |
| Map Operator Tree: |
| TableScan |
| alias: employee_partitioned |
| Pruned Column Paths: gender_age.gender |
| Statistics: |
| Num rows: 4 Data size: 223 Basic stats: COMPLETE Column stats: NONE |
| Select Operator |
| expressions: gender_age.gender (type: string) |
| outputColumnNames: _col0 |
| Statistics: |
| Num rows: 4 Data size: 223 Basic stats: COMPLETE Column stats: NONE |
| Group By Operator |
| aggregations: count() |
| keys: _col0 (type: string) |
| mode: hash |
| outputColumnNames: _col0, _col1 |
| Statistics: |
| Num rows: 4 Data size: 223 Basic stats: COMPLETE Column stats: NONE |
| Reduce Output Operator |
| key expressions: _col0 (type: string) |
| sort order: + |
| Map-reduce partition columns: _col0 (type: string) |
| Statistics: |
| Num rows: 4 Data size: 223 Basic stats: COMPLETE Column stats: NONE |
| TopN Hash Memory Usage: 0.1 |
| value expressions: _col1 (type: bigint) |
| Reduce Operator Tree: |
| Group By Operator |
| aggregations: count(VALUE._col0) |
| keys: KEY._col0 (type: string) |
| mode: mergepartial |
| outputColumnNames: _col0, _col1 |
| Statistics: |
| Num rows: 2 Data size: 111 Basic stats: COMPLETE Column stats: NONE |
| Limit |
| Number of rows: 2 |
| Statistics: |
| Num rows: 2 Data size: 110 Basic stats: COMPLETE Column stats: NONE |

Performance Considerations Chapter 7

[124]

| File Output Operator |
| compressed: false |
| Statistics: |
| Num rows: 2 Data size: 110 Basic stats: COMPLETE Column stats: NONE |
| table: |
| input format: |
| org.apache.hadoop.mapred.SequenceFileInputFormat |
| output format: |
| org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat |
| serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe |
| |
| Stage: Stage-0 |
| Fetch Operator |
| limit: 2 |
| Processor Tree: |
| ListSink |
+--+
53 rows selected (0.232 seconds)

Both the Ambari Hive view and the Hue Hive editor have built-in visualized query explain
when running a query. The Ambari Hive view visual the preceding query as follows:

Ambari Hive view visual explaination

Performance Considerations Chapter 7

[125]

ANALYZE statement
Hive statistics are a collection of data that describes more details, such as the number of
rows, number of files, and raw data size of the objects in the database. Statistics are the
metadata of data, collected and stored in the metastore database. Hive supports statistics
at the table, partition, and column level. These statistics serve as an input to the Hive Cost-
Based Optimizer (CBO), which is an optimizer used to pick the query plan with the lowest
cost in terms of system resources required to complete the query. The statistics
are partially gathered automatically in Hive v3.2.0 through to JIRA HIVE-11160 (https:/ ​/
issues.​apache.​org/ ​jira/ ​browse/ ​HIVE- ​11160) or manually through the ANALYZE
statement on tables, partitions, and columns, as in the following examples:

Collect statistics on the existing table. When the NOSCAN option is specified, the1.
command runs faster by ignoring file scanning but only collecting the number of
files and their size:

 > ANALYZE TABLE employee COMPUTE STATISTICS;
 No rows affected (27.979 seconds)
 > ANALYZE TABLE employee COMPUTE STATISTICS NOSCAN;
 No rows affected (25.979 seconds)

Collect statistics on specific or all existing partitions:2.

 -- Applies for specific partition
 > ANALYZE TABLE employee_partitioned
 > PARTITION(year=2018, month=12) COMPUTE STATISTICS;
 No rows affected (45.054 seconds)

 -- Applies for all partitions
 > ANALYZE TABLE employee_partitioned
 > PARTITION(year, month) COMPUTE STATISTICS;
 No rows affected (45.054 seconds)

Collect statistics on columns for existing tables:3.

 > ANALYZE TABLE employee_id COMPUTE STATISTICS FOR COLUMNS
 employee_id;
 No rows affected (41.074 seconds)

https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160
https://issues.apache.org/jira/browse/HIVE-11160

Performance Considerations Chapter 7

[126]

We can enable automatic gathering of statistics by specifying SET
hive.stats.autogather=true. For new tables or partitions that are
populated through the INSERT OVERWRITE/INTO statement (rather than
the LOAD statement), statistics are automatically collected in the
metastore.

Once the statistics are built and collected, we can check the statistics with the DESCRIBE
EXTENDED/FORMATTED statement. From the table/partition output, we can find the
statistical information inside the parameters, such as parameters:{numFiles=1,
COLUMN_STATS_ACCURATE=true, transient_lastDdlTime=1417726247,

numRows=4, totalSize=227, rawDataSize=223}). The following is an example of
checking statistics in a table:

-- Check statistics in a table
> DESCRIBE EXTENDED employee_partitioned PARTITION(year=2018, month=12);

-- Check statistics in a partition
> DESCRIBE EXTENDED employee;
...
parameters:{numFiles=1, COLUMN_STATS_ACCURATE=true,
transient_lastDdlTime=1417726247, numRows=4, totalSize=227,
rawDataSize=223}).

-- Check statistics in a column
> DESCRIBE FORMATTED employee.name;
+--------+---------+---+---+---------+--------------+
|col_name|data_type|min|max|num_nulls|distinct_count| ...
+--------+---------+---+---+---------+--------------+
| name | string | | | 0 | 5 | ...
+--------+---------+---+---+---------+--------------+
+-----------+-----------+
|avg_col_len|max_col_len| ...
+-----------+-----------+
| 5.6 | 7 | ...
+-----------+-----------+
3 rows selected (0.116 seconds)

Logs
Logs provide detailed information to find out how a query/job runs. By checking the log
details, we can identify runtime problems and issues that may cause bad performance.
There are two types of log available, the system log and job log.

Performance Considerations Chapter 7

[127]

The system log contains the Hive running status and issues. It is configured in
{HIVE_HOME}/conf/hive-log4j.properties. The following three lines of the log
properties can be found in the file:

hive.root.logger=WARN,DRFA ## set logger level
hive.log.dir=/tmp/${user.name} ## set log file path
hive.log.file=hive.log ## set log file name

To modify the logger level, we can either modify the preceding property file that applies to
all users, or set a Hive command-line config that only applies to the current user session,
such as $hive --hiveconf hive.root.logger=DEBUG,console.

The job log contains job information and is usually managed by Yarn. To check a job log,
use yarn logs -applicationId <application_id>.

Design optimization
Design optimization covers several designs, data formats, and job optimization strategies to
improve performance. This will be covered in the following sections.

Partition table design
Hive partitioning is one of the most effective ways to improve query performance on larger
tables. A query with partition filtering will only load data from the specified partitions
(sub-directories), so it can execute much faster than a normal query that filters by a non-
partitioning field. The selection of the partition key is always an important factor for
performance. It should always be a low-cardinal attribute to avoid so many sub-directories
overhead. The following are some attributes commonly used as partition keys:

Partitions by date and time: Use date and time, such as year, month, and day
(even hours), as partition keys when data is associated with the date/time
columns, such as load_date, business_date, run_date, and so on
Partitions by location: Use country, territory, state, and city as partition keys
when data is location related
Partitions by business logic: Use department, sales region, applications,
customers, and so on as partition keys when data can be separated evenly by
business logic

Performance Considerations Chapter 7

[128]

Bucket table design
Similar to partitioning, a bucket table organizes data into separate files in HDFS. Bucketing
can speed up data sampling on buckets. Bucketing can also improve join performance if the
join keys are also bucket columns because bucketing ensures the keys are present in a
certain bucket. Better-chosen bucket columns make a bucket table join perform better. The
best practice for choosing bucket columns is to identify the columns that are most likely
used in the filter or join condition in terms of the business logic behind the datasets. For
more details, refer to the Job optimization section later in this chapter.

Index design
Using indexes is a very common best practice for performance tuning in relational
databases. Hive has supported index creation on tables/partitions since Hive v0.7.0. An
index in Hive provides a key-based data view and better data access for certain operations,
such as WHERE, GROUP BY, and JOIN. Using an index is always a cheaper alternative than
full-table scans. The command to create an index in HQL is straightforward, as follows:

> CREATE INDEX idx_id_employee_id
> ON TABLE employee_id (employee_id)
> AS 'COMPACT'
> WITH DEFERRED REBUILD;
No rows affected (1.149 seconds)

In addition to this COMPACT index, which stores the pair of the indexed column's value and
its block ID, HQL has also supported BITMAP indexes since v0.8.0 for column values with
less variance, as shown in the following example:

> CREATE INDEX idx_gender_employee_id
> ON TABLE employee_id (gender_age)
> AS 'BITMAP'
> WITH DEFERRED REBUILD;
No rows affected (0.251 seconds)

The WITH DEFERRED REBUILD option in this example prevents the index from
immediately being built. To build the index, we can issue the ALTER...REBUILD
commands as shown in the following example. When data in the base table changes, the
same command must be used again to bring the index up to date. This is an atomic
operation. If the index rebuilt on a table has been previously indexed failed, the state of the
index remains the same. See this example to build the index:

> ALTER INDEX idx_id_employee_id ON employee_id REBUILD;

Performance Considerations Chapter 7

[129]

No rows affected (111.413 seconds)

> ALTER INDEX idx_gender_employee_id ON employee_id REBUILD;
No rows affected (82.23 seconds)

Once the index is built, a new index table is created for each index with the name in the
format of <database_name>__<table_name>_<index_name>__:

> SHOW TABLES '*idx*';
+-----------+---+-----------+
|TABLE_SCHEM| TABLE_NAME | TABLE_TYPE|
+-----------+---+-----------+
|default |default__employee_id_idx_id_employee_id__ |INDEX_TABLE|
|default |default__employee_id_idx_gender_employee_id__|INDEX_TABLE|
+-----------+---+-----------+

The index table contains the indexed column, the _bucketname (a typical file URI on
HDFS), and _offsets (offsets for each row). Then, this index table can be referred to when
we query the indexed columns from the indexed table, as shown here:

> DESC default__employee_id_idx_id_employee_id__;
+--------------+----------------+----------+
| col_name | data_type | comment |
+--------------+----------------+----------+
| employee_id | int | |
| _bucketname | string | |
| _offsets | array<bigint> | |
+--------------+----------------+----------+
3 rows selected (0.135 seconds)

> SELECT * FROM default__employee_id_idx_id_employee_id__;
+--------------+--+
| employee_id | _bucketname | _offsets |
+--------------+--+
| 100 | .../warehouse/employee_id/employee_id.txt | [0] |
| 101 | .../warehouse/employee_id/employee_id.txt | [66] |
| 102 | .../warehouse/employee_id/employee_id.txt | [123] |
| ... | | ... |
+--------------+---+----------+
25 rows selected (0.219 seconds)

To drop an index, we can only use the DROP INDEX index_name ON table_name
statement as follows. We cannot drop the index with a DROP TABLE statement:

> DROP INDEX idx_gender_employee_id ON employee_id;
No rows affected (0.247 seconds)

Performance Considerations Chapter 7

[130]

Use skewed/temporary tables
Besides regular internal/external or partition tables, we should also consider using a
skewed or temporary table for better design as well as performance.

Since Hive v0.10.0, HQL has supported the creation of a special table for organizing skewed
data. A skewed table can be used to improve performance by splitting those skewed values
into separate files or directories automatically. As a result, the total number of files or
partition folders is reduced. Also, a query can include or ignore this data quickly and
efficiently. Here is an example used to create a skewed table:

> CREATE TABLE sample_skewed_table (
> dept_no int,
> dept_name string
>)
> SKEWED BY (dept_no) ON (1000, 2000); -- Specify value skewed
No rows affected (3.122 seconds)

> DESC FORMATTED sample_skewed_table;
+-----------------+------------------+---------+
| col_name | data_type | comment |
+-----------------+------------------+---------+
| ... | ... | |
| Skewed Columns: | [dept_no] | NULL |
| Skewed Values: | [[1000], [2000]] | NULL |
| ... | ... | |
+-----------------+------------------+---------+
33 rows selected (0.247 seconds)

On the other hand, using temporary tables in HQL to keep intermediate data during data
recursive processing will save you the effort of rebuilding the common or shared result set.
In addition, temporary tables can leverage storage policy settings to use SSD or memory for
data storage, and this adds up to better performance too.

Data optimization
Data file optimization covers the performance improvement on the data files in terms of file
format, compression, and storage.

Performance Considerations Chapter 7

[131]

File format
Hive supports TEXTFILE, SEQUENCEFILE, AVRO, RCFILE, ORC, and PARQUET file formats.
There are two HQL statements used to specify the file format as follows:

CREATE TABLE ... STORE AS <file_format>: Specify the file format when
creating a table
ALTER TABLE ... [PARTITION partition_spec] SET FILEFORMAT

<file_format>: Modify the file format (definition only) in an existing table

Once a table stored in text format is created, we can load text data directly into it. To load
text data into tables that have other file formats, we can first load the data into a table
stored as text, where we use INSERT OVERWRITE/INTO TABLE ... SELECT to select data
from it and then insert the data into the tables that have other file formats.

To change the default file format for table creation, we can set
the hive.default.fileformat = <file_format> property for all
tables or hive.default.fileformat.managed =
<file_format> only for internal/managed tables.

TEXT, SEQUENCE, and AVRO files as a row-oriented file storage format are not optimal
solutions since the query has to read a full row even if only one column is being requested.
On the other hand, a hybrid row-columnar storage file format, such as RCFILE, ORC,
or PARQUET, is used to resolve this problem. The details of file formats supported by HQL
are as follows:

TEXTFILE: This is the default file format for table creation. Data is stored in clear
text for this format. A text file is naturally splittable and able to be processed in
parallel. It can also be compressed with algorithms, such as GZip, LZO, and
Snappy. However, most compressed files are not splittable for parallel
processing. As a result, they use only one job with a single mapper to process
data slowly. The best practice for using compressed text files is to make sure the
file is not too big and close to a couple of HDFS block sizes.
SEQUENCEFILE: This is a binary storage format for key/value pairs. The benefit of
a sequence file is that it is more compact than a text file and fits well with the
MapReduce output format. Sequence files can be compressed to record or block
level, where the block level has a better compression ratio. To enable block-level
compression, we need use do the following settings: set
hive.exec.compress.output=true; and set
io.seqfile.compression.type=BLOCK;.

Performance Considerations Chapter 7

[132]

AVRO: This is also a binary format. More than that, it is also a serialization and
deserialization framework. AVRO provides a data schema that describes the data
structure and also handles the schema changes, such as adding, renaming, and
removing columns. The schema is stored along with data for any further
processing. Considering AVRO's advantages for dealing with schema evolution, it
is recommended to use it when mapping the source data, which is likely to have
schema changes time by time.
RCFILE: This is short for Record Columnar File. It is a flat file consisting of
binary key/value pairs that share many similarities with a sequence file. The
RCFile splits data horizontally into row groups. One or several groups are
stored in an HDFS file. Then, RCFile saves the row group data in a columnar
format by saving the first column across all rows, then the second column across
all rows, and so on. This format is splittable and allows Hive to skip irrelevant
parts of the data and get the results faster and cheaper.
ORC: This is short for Optimized Row Columnar. It has been available since Hive
v0.11.0. The ORC format can be considered an improved version of RCFILE. It
provides a larger block size of 256 MB by default (RCFILE has 4 MB and
SEQUENCEFILE has 1 MB), optimized for large sequential reads on HDFS for
more throughput and fewer files to reduce overload in the namenode. Different
from RCFILE, which relies on the metastore to know data types, the ORC file
understands the data types by using specific encoders so that it can optimize
compression depending on different types. It also stores basic statistics, such as
MIN, MAX, SUM, and COUNT, on columns as well as a lightweight index that can be
used to skip blocks of rows that do not matter.
PARQUET: This is another row columnar file format that has a similar design to
that of ORC. What's more, Parquet has a wider range of support for the majority
of projects in the ecosystem, compared to ORC which is mainly supported by
Hive, Pig, and Spark. PARQUET leverages the best practices in the design of
Google's Dremel (see http:/ ​/ ​research. ​google. ​com/ ​pubs/ ​pub36632. ​html) to
support the nested structure of data. PARQUET has been supported by a plugin
since Hive v0.10.0 and got native support after v0.13.0.

Depending on the technology stacks being used, it is suggested to use the ORC format if
Hive is the majority tool used to define or process data. If you use several tools in the
ecosystem, PARQUET is the better choice in terms of adaptability.

http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html

Performance Considerations Chapter 7

[133]

Hadoop Archive File (HAR) is another type of file format to pack HDFS
files into archives. This is an option (not a good option) for storing a large
number of small-sized files in HDFS, as storing a large number of small-
sized files directly in HDFS is not very efficient. However, HAR has other
limitations, such as an immutable archive process, not being splittable,
and compatibility issues. For more information about HAR and archiving,
please refer to the Hive Wiki at https:/ ​/​cwiki. ​apache. ​org/ ​confluence/
display/ ​Hive/ ​LanguageManual+Archiving.

Compression
Compression techniques in Hive can significantly reduce the amount of data transferring
between mappers and reducers by properly compressing intermediate and final output
data. As a result, the query will have better performance. To compress intermediate files
produced between multiple MapReduce jobs, we need to set the following property (false
by default) in the command-line session or the hive-site.xml file:

> SET hive.exec.compress.intermediate=true

Then, we need to decide which compression codec to configure. A list of
commonly supported codecs is in the following table:

Compression Codec Extension Splittable
Deflate org.apache.hadoop.io.compress.DefaultCodec .deflate N
Gzip org.apache.hadoop.io.compress.GzipCodec .gz N
Bzip2 org.apache.hadoop.io.compress.BZip2Codec .gz Y
LZO com.apache.compression.lzo.LzopCodec .lzo N
LZ4 org.apache.hadoop.io.compress.Lz4Codec .lz4 N
Snappy org.apache.hadoop.io.compress.SnappyCodec .snappy N

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving

Performance Considerations Chapter 7

[134]

Deflate (.deflate) is a default codec with a balanced compression ratio and CPU cost. The
compression ratio for Gzip is very high, as is its CPU cost. Bzip2 is splittable, but it is too
slow for compression considering its huge CPU cost, like Gzip. LZO files are not natively
splittable, but we can preprocess them (using
com.hadoop.compression.lzo.LzoIndexer) to create an index that determines the file
splits. When it comes to the balance of CPU cost and compression ratio, LZ4 or Snappy do a
better job than Deflate, but Snappy is more popular. Since the majority of compressed files
are not splittable, it is not suggested to compress a single big file. The best practice is to
produce compressed files in a couple of HDFS block sizes so that each file takes less time
for processing. The compression codec can be specified in either mapred-site.xml, hive-
site.xml, or a command-line session as follows:

> SET hive.intermediate.compression.codec=
org.apache.hadoop.io.compress.SnappyCodec

Intermediate compression will only save disk space for specific jobs that require multiple
MapReduce jobs. For further saving of disk space, the actual Hive output files can be
compressed. When the hive.exec.compress.output property is set to true, Hive will
use the codec configured by the
mapreduce.output.fileoutputformat.compress.codec property to compress the
data in HDFS as follows. These properties can be set in the hive-site.xml or in the
command-line session:

> SET hive.exec.compress.output=true
> SET mapreduce.output.fileoutputformat.compress.codec=
org.apache.hadoop.io.compress.SnappyCodec

Storage optimization
Data that is used or scanned frequently can be identified as hot data. Usually, query
performance on hot data is critical for overall performance. Increasing the data replication
factor in HDFS (see the following example) for hot data could increase the chance of data
being hit locally by jobs and improve the overall performance. However, this is a trade-off
against storage:

$ hdfs dfs -setrep -R -w 4 /user/hive/warehouse/employee
Replication 4 set: /user/hive/warehouse/employee/000000_0

On the other hand, too many files or redundancy could make namenode's memory
exhausted, especially lots of small files whose sizes are less than the HDFS block sizes.
Hadoop itself already has some solutions to deal with many small-file issues in the
following ways:

Performance Considerations Chapter 7

[135]

Hadoop Archive/HAR: These are toolkits to pack small files introduced before.
SEQUENCEFILE Format: This is a format that can be used to compress small files
into bigger files.
CombineFileInputFormat: A type of InputFormat to combine small files
before map and reduce processing. It is the default InputFormat for Hive (see
https:/​/ ​issues. ​apache. ​org/ ​jira/​browse/ ​HIVE- ​2245).
HDFS Federation: It supports multiple namenodes to manage more files.

We can also leverage other tools in the Hadoop ecosystem if we have them installed, such
as the following:

HBase has a smaller block size and better file format to deal with smaller file
storage and access issues
Flume NG can be used as a pipe to merge small files into big ones
Developed and scheduled a file merge program to merge small files in HDFS or
before loading the files to HDFS

For Hive, we can use the following configurations to merge files of query results and avoid
recreating small files:

hive.merge.mapfiles: This merges small files at the end of a map-only job. By
default, it is true.
hive.merge.mapredfiles: This merges small files at the end of a MapReduce
job. Set it to true, as the default is false.
hive.merge.size.per.task: This defines the size of merged files at the end of
the job. The default value is 256,000,000.
hive.merge.smallfiles.avgsize: This is the threshold for triggering file
merge. The default value is 16,000,000.

When the average output file size of a job is less than the value specified by
the hive.merge.smallfiles.avgsize property and both hive.merge.mapfiles (for
map-only jobs) and hive.merge.mapredfiles (for MapReduce jobs) are set to true, Hive
will start an additional MapReduce job to merge the output files into big files.

Job optimization
Job optimization covers experience and skills to improve performance in the areas of job-
running mode, JVM reuse, job parallel running, and query join optimizations.

https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245
https://issues.apache.org/jira/browse/HIVE-2245

Performance Considerations Chapter 7

[136]

Local mode
Hadoop can run in standalone, pseudo-distributed, and fully distributed mode. Most of the
time, we need to configure it to run in fully distributed mode. When the data to process is
small, it is an overhead to start distributed data processing since the launch time of the fully
distributed mode takes more time than the job processing time. Since
v0.7.0, Hive has supported automatic conversion of a job to run in local mode with the
following settings:

> SET hive.exec.mode.local.auto=true; -- default false
> SET hive.exec.mode.local.auto.inputbytes.max=50000000;
> SET hive.exec.mode.local.auto.input.files.max=5; -- default 4

A job must satisfy the following conditions to run in local mode:

The total input size of the job is less than the value set
by hive.exec.mode.local.auto.inputbytes.max
The total number of map tasks is less than the value set
by hive.exec.mode.local.auto.input.files.max
The total number of reduce tasks required is 1 or 0

JVM reuse
By default, Hadoop launches a new JVM for each map or reduce job and runs the map or
reduce task in parallel. When the map or reduce job is a lightweight job running only for a
few seconds, the JVM startup process could be a significant overhead. Hadoop has an
option to reuse the JVM by sharing the JVM to run mapper/reducer serially instead of in
parallel. JVM reuse applies to map or reduce tasks in the same job. Tasks from different jobs
will always run in a separate JVM. To enable reuse, we can set the maximum number of
tasks for a single job for JVM reuse using the following property. Its default value is 1. If set
to -1, there is no limit:

> SET mapreduce.job.jvm.numtasks=5;

Parallel execution
Hive queries are commonly translated into a number of stages that are executed by the
default sequence. These stages are not always dependent on each other. Instead, they can
run in parallel to reduce the overall job running time. We can enable this feature with the
following settings and set the expected number of jobs running in parallel:

Performance Considerations Chapter 7

[137]

> SET hive.exec.parallel=true; -- default false
> SET hive.exec.parallel.thread.number=16; -- default 8

Parallel execution will increase cluster utilization. If the utilization of a cluster is already
very high, parallel execution will not help much in terms of overall performance.

Join optimization
We have already discussed optimization in different types of Hive joins in Chapter 4, Data
Correlation and Scope. Here, we'll briefly review the key settings for join improvement.

Common join
The common join is also called the reduce side join. It is a basic join in HQL and works
most of the time. For common joins, we need to make sure the big table is on the rightmost
side or specified by hit, as follows:

/*+ STREAMTABLE(stream_table_name) */

Map join
Map join is used when one of the join tables is small enough to fit in the memory, so it is
fast but limited by the table size. Since Hive v0.7.0, it has been able to convert map join
automatically with the following settings:

> SET hive.auto.convert.join=true; -- default true after v0.11.0
> SET hive.mapjoin.smalltable.filesize=600000000; -- default 25m
> SET hive.auto.convert.join.noconditionaltask=true; -- default value above
is true so map join hint is not needed
> SET hive.auto.convert.join.noconditionaltask.size=10000000; -- default
value above controls the size of table to fit in memory

Once join auto-convert is enabled, Hive will automatically check whether the smaller table
file size is bigger than the value specified by hive.mapjoin.smalltable.filesize, and
then it will convert the join to a common join. If the file size is smaller than this threshold, it
will try to convert the common join into a map join. Once auto-convert join is enabled, there
is no need to provide the map join hints in the query.

Performance Considerations Chapter 7

[138]

Bucket map join
A bucket map join is a special type of map join applied on the bucket tables. To enable a
bucket map join, we need to enable the following settings:

> SET hive.auto.convert.join=true;
> SET hive.optimize.bucketmapjoin=true; -- default false

In a bucket map join, all the join tables must be bucket tables and join on bucket columns.
In addition, the bucket number in the bigger tables must be a multiple of the bucket
number in the smaller tables.

Sort merge bucket (SMB) join
SMB is a join performed on bucket tables that have the same sorted, bucket, and join
condition columns. It reads data from both bucket tables and performs common joins (map
and reduce triggered) on the bucket tables. We need to enable the following properties to
use SMB:

> SET hive.input.format=
> org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;
> SET hive.auto.convert.sortmerge.join=true;
> SET hive.optimize.bucketmapjoin=true;
> SET hive.optimize.bucketmapjoin.sortedmerge=true;
> SET hive.auto.convert.sortmerge.join.noconditionaltask=true;

Sort merge bucket map (SMBM) join
An SMBM join is a special bucket join but triggers a map-side join only. It can avoid
caching all rows in the memory like a map join does. To perform SMBM joins, the join
tables must have the same bucket, sort, and join condition columns. To enable such joins,
we need to enable the following settings:

> SET hive.auto.convert.join=true;
> SET hive.auto.convert.sortmerge.join=true
> SET hive.optimize.bucketmapjoin=true;
> SET hive.optimize.bucketmapjoin.sortedmerge=true;
> SET hive.auto.convert.sortmerge.join.noconditionaltask=true;
> SET hive.auto.convert.sortmerge.join.bigtable.selection.policy=
org.apache.hadoop.hive.ql.optimizer.TableSizeBasedBigTableSelectorForAutoSM
J;

Performance Considerations Chapter 7

[139]

Skew join
When working with data that has a highly uneven distribution, data skew could happen in
such a way that a small number of compute nodes must handle the bulk of the
computation. The following setting informs Hive to optimize properly if data skew
happens:

> SET hive.optimize.skewjoin=true; --If there is data skew in join, set it
to true. Default is false.

> SET hive.skewjoin.key=100000;
 --This is the default value. If the number of key is bigger than
 --this, the new keys will send to the other unused reducers.

Skewed data could occur with the GROUP BY data too. To optimize it, we
need set hive.groupby.skewindata=true to use the preceding
settings to enable skew data optimization in the GROUP BY result. Once
configured, Hive will first trigger an additional MapReduce job whose
map output will randomly distribute to the reducer to avoid data skew.

For more information about join optimization, please refer to the Hive Wiki at https:/ ​/
cwiki.​apache.​org/ ​confluence/ ​display/ ​Hive/​LanguageManual+JoinOptimization and
https:/​/​cwiki.​apache. ​org/ ​confluence/ ​display/ ​Hive/ ​Skewed+Join+Optimization.

Job engine
Hive supports running jobs on different engines. The choice of engine will also impact the
overall performance. However, this is a bigger change compared to the other settings. Also,
this change requires a service restart rather than temporarily make it effective in command-
line session. Here is the syntax to set the engine as well as details for each of them:

SET hive.execution.engine=<engine>; -- <engine> = mr|tez|spark

mr: This is the default engine, MapReduce. It was deprecated after Hive v2.0.0.
tez: Tez (http:/ ​/ ​tez. ​apache. ​org/​) is an application framework built on Yarn
that can execute complex Directed Acyclic Graphs (DAGs) for general data-
processing tasks. Tez further splits map and reduce jobs into smaller tasks and
combines them in a flexible and efficient way for execution. Tez is considered a
flexible and powerful successor to the MapReduce framework. Tez is production-
ready and being used most of the time to replace the mr engine.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
http://tez.apache.org/
http://tez.apache.org/
http://tez.apache.org/
http://tez.apache.org/
http://tez.apache.org/
http://tez.apache.org/
http://tez.apache.org/
http://tez.apache.org/
http://tez.apache.org/
http://tez.apache.org/

Performance Considerations Chapter 7

[140]

spark: Spark is another general purpose big data framework. Its component,
Spark SQL, supports a subset of HQL and provides similar syntax to HQL. By
using Hive over Spark, Hive can leverage Spark's in-memory computing model
as well as Hive's mature cost-based optimizer. However, Hive over Spark
requires manual configurations and still lacks solid use cases in production. For
more details of Hive over Spark, refer to the Wiki page at (https:/ ​/ ​cwiki.
apache.​org/ ​confluence/ ​display/ ​Hive/ ​Hive+on+Spark%3A+Getting+Started).
mr3: MR3 is another experiment engine (https:/ ​/​mr3. ​postech. ​ac.​kr/ ​). It is
similar to Tez but with the enhancements of simpler design, better performance,
and more features. MR3 is documented as ready for production use and supports
all major features from Tez, such as Kerberos-based security, authentication and
authorization, fault tolerance, and recovery. However, it lacks a solid production
use case and best practices in production deployment, as well as CDH or HDP
distribution support.

Live Long And Process (LLAP) functionality was added in Hive v2.0.0. It
combines a live long running query service and intelligent in-memory
caching to deliver fast queries. Together with a job engine, LLAP provides
a hybrid execution model to improve overall Hive performance. LLAP
needs to work through Apache Slider (https:/ ​/​slider. ​incubator.
apache. ​org/ ​) and only works with Tez for now. In the future, it will
support other engines. The recent HDP has provided LLAP supported
thought Tez.

Optimizer
Similar to relational databases, Hive generates and optimizes each query's logical and
physical execution plan before submitting for final execution. There are two major
optimizers now in Hive to further optimize query performance in general, Vectorize and
Cost-Based Optimization (CBO).

https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://mr3.postech.ac.kr/
https://slider.incubator.apache.org/
https://slider.incubator.apache.org/
https://slider.incubator.apache.org/
https://slider.incubator.apache.org/
https://slider.incubator.apache.org/
https://slider.incubator.apache.org/
https://slider.incubator.apache.org/
https://slider.incubator.apache.org/
https://slider.incubator.apache.org/
https://slider.incubator.apache.org/
https://slider.incubator.apache.org/

Performance Considerations Chapter 7

[141]

Vectorization optimization
Vectorization optimization processes a larger batch of data at the same time rather than one
row at a time, thus significantly reducing computing overhead. Each batch consists of a
column vector that is usually an array of primitive types. Operations are performed on the
entire column vector, which improves the instruction pipelines and cache use. Files must be
stored in the ORC format in order to use vectorization. For more details on vectorization,
please refer to the Hive Wiki (https:/ ​/​cwiki. ​apache. ​org/​confluence/ ​display/ ​Hive/
Vectorized+Query+Execution). To enable vectorization, we need to use the following
setting:

> SET hive.vectorized.execution.enabled=true; -- default false

Cost-based optimization
CBO in Hive is powered by Apache Calcite (http:/ ​/ ​calcite. ​apache. ​org/​), which is an
open source, enterprise-grade cost-based logical optimizer and query execution framework.
Hive CBO generates efficient execution plans by examining the query cost, which is
collected by ANALYZE statements or the metastore itself, ultimately cutting down on query
execution time and reducing resource utilization. To use CBO, set the following properties:

> SET hive.cbo.enable=true; -- default true after v0.14.0
> SET hive.compute.query.using.stats=true; -- default false
> SET hive.stats.fetch.column.stats=true; -- default false
> SET hive.stats.fetch.partition.stats=true; -- default true

Summary
In this chapter, we first covered how to identify performance bottlenecks using EXPLAIN
and ANALYZE statements. Then, we spoke about design optimization for performance when
using tables, partitions, and indexes. We also covered data file optimization including file
format, compression and storage. At the end of this chapter, we discussed job optimization,
job engines, and optimizers. After going through this chapter, you should be able to do
performance troubleshooting and tuning in Hive. In the next chapter, we'll talk about
function extensions for Hive.

https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution
http://calcite.apache.org/
http://calcite.apache.org/
http://calcite.apache.org/
http://calcite.apache.org/
http://calcite.apache.org/
http://calcite.apache.org/
http://calcite.apache.org/
http://calcite.apache.org/
http://calcite.apache.org/
http://calcite.apache.org/

8
Extensibility Considerations

Although Hive has provided many built-in functions, in special use cases, users may need
power beyond what's provided. In this case, we can extend Hive's functionality in three
main areas:

User-defined function (UDF): This provides a way to extend functionalities with
an external function (mainly written in Java) that can be evaluated in HQL
HPL/SQL: This provides procedure-language-programming support to HQL
Streaming: This plugs a user's own customized programs in to the data
streaming
SerDe: This stands for serialization and deserialization and provides a way to
serialize or deserialize data with the customized file format

In this chapter, we'll talk about each of them in more detail.

User-defined functions
User-defined functions provide a way to use the user's own application/business logic for
processing column values during an HQL query. For example, a user-defined function
could perform feature cleaning with an external machine learning library, authenticate user
access from other services, merge several values into one or many, perform special data
encoding or encryption, and other operations that are outside the scope of the regular HQL
operators and functions. Hive defines the following three types of user-defined functions,
which are extensible:

UDF: It stands for User-Defined Function, which operates row-wise and outputs
one result for one row, such as most built-in mathematics and string functions.
UDAF: It stands for User-Defined Aggregating Function, which operates row-wise
or group-wise and outputs one row for the whole table or one row for each
group as a result, such as the max(...) and count(...) built-in functions.

Extensibility Considerations Chapter 8

[143]

UDTF: It stands for User-Defined Table-Generating Function, which also operates
row-wise, but produces multiple rows/tables as a result, such as the
explode(...) function. UDTF can be used after the SELECT or LATERAL VIEW
statement.

Although all In functions in HQL are implemented in Java, UDF can also
be implemented in any JVM-compatible language, such as Scala. In this
book, we only focus on writing user-defined functions in Java.

In the following sections, we'll start looking at the Java code template for each kind of user-
defined function in more detail.

UDF code template
The code template for a regular UDF is as follows:

package com.packtpub.hive.essentials.hiveudf;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.udf.UDFType;
import org.apache.hadoop.io.Text;
// Other libraries my needed

// These information is show by "desc function <function_name>"
@Description(
 name = "udf_name",
 value = "_FUNC_(arg1, ... argN) - description for the function.",
 extended = "decription with more details, such as syntax, examples."
)
@UDFType(deterministic = true, stateful = false)

public class udf_name extends UDF {
 // evaluate() is the only necessary function to overwrite
 public Text evaluate(){
 /*
 * Here to impelement core function logic
 */
 return "return the udf result";
 }
 // override is supported
 public String evaluate(<Type_arg1> arg1,..., <Type_argN> argN){
 /*

Extensibility Considerations Chapter 8

[144]

 * Do something here
 */
 return "return the udf result";
 }
}

In the preceding template, the package definition and imports should be self-explanatory.
We can import whatever is needed besides the top three mandatory libraries. The
@Description annotation is a useful Hive-specific annotation to provide function usage.
The information defined in the value property will be shown in the DESC FUNCTION
statement. The information defined in the extended property will be shown in the
DESCRIBE FUNCTION EXTENDED statement. The @UDFType annotation specifies what
behavior is expected from the function. A deterministic UDF (deterministic = true) is a
function that always gives the same result when passing the same arguments, such as
length(...) and max(...). On the other hand, a non-deterministic (deterministic =
false) UDF can return a different result for the same set of arguments, for example,
unix_timestamp(), which returns the current timestamp in the default time zone. The
stateful (stateful = true) property allows functions to keep some static variables
available across rows, such as row_number(), which assigns sequential numbers for table
rows.

All UDF should extend from the org.apache.hadoop.hive.ql.exec.UDF class, so the
UDF subclass has to implement the evaluate() method which can also be overridden for a
different purpose. In this method, we can implement expected function logic and
exception-handling using Java, Hadoop, and Hive libraries and data types.

UDAF code template
In this section, we introduce the UDAF code template, which extends from
the org.apache.hadoop.hive.ql.exec.UDAF class. The code template is as follows:

package com.packtpub.hive.essentials.hiveudaf;

import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.udf.UDFType;

@Description(
 name = "udaf_name",
 value = "_FUNC_(arg1, arg2, ... argN) - description for the function",
 extended = "description with more details, such as syntax, examples."

Extensibility Considerations Chapter 8

[145]

)
@UDFType(deterministic = false, stateful = true)

public final class udaf_name extends UDAF {
 /**
 * The internal state of an aggregation function.
 *
 * Note that this is only needed if the internal state
 * cannot be represented by a primitive type.
 *
 * The internal state can contain fields with types like
 * ArrayList<String> and HashMap<String,Double> if needed.
 */
 public static class UDAFState {
 private <Type_state1> state1;
 private <Type_stateN> stateN;
 }

 /**
 * The actual class for doing the aggregation. Hive will
 * automatically look for all internal classes of the UDAF
 * that implements UDAFEvaluator.
 */
 public static class UDAFExampleAvgEvaluator implements UDAFEvaluator {

 UDAFState state;

 public UDAFExampleAvgEvaluator() {
 super();
 state = new UDAFState();
 init();
 }

 /**
 * Reset the state of the aggregation.
 */
 public void init() {
 /*
 * Examples for initializing state.
 */
 state.state1 = 0;
 state.stateN = 0;
 }

 /**
 * Iterate through one row of original data.
 *
 * The number and type of arguments need to be the same as we

Extensibility Considerations Chapter 8

[146]

 * call this UDAF from the Hive command line.
 *
 * This function should always return true.
 */
 public boolean iterate(<Type_arg1> arg1,..., <Type_argN> argN){
 /*
 * Add logic here for how to do aggregation if there is
 * a new value to be aggregated.
 */
 return true;
 }

 /**
 * Called on the mapper side on different data nodes.
 * Terminate a partial aggregation and return the state.
 * If the state is a primitive, just return primitive Java
 * classes like Integer or String.
 */
 public UDAFState terminatePartial() {
 /*
 * Check and return a partial result in expectations.
 */
 return state;
 }

 /**
 * Merge with a partial aggregation.
 *
 * This function should always have a single argument,
 * which has the same type as the return value of
 * terminatePartial().
 */
 public boolean merge(UDAFState o) {
 /*
 * Define operations how to merge the result calculated
 * from all data nodes.
 */
 return true;
 }

 /**
 * Terminates the aggregation and returns the final result.
 */
 public long terminate() {
 /*
 * Check and return final result in expectations.
 */
 return state.stateN;

Extensibility Considerations Chapter 8

[147]

 }
 }
}

A UDAF must be a subclass of org.apache.hadoop.hive.ql.exec.UDAF containing one
or more nested static classes implementing
org.apache.hadoop.hive.ql.exec.UDAFEvaluator. Make sure that the inner class
that implements UDAFEvaluator is defined as public. Otherwise, Hive won't be able to use
reflection and determine the UDAFEvaluator implementation. We should also implement
the five required functions, init(), iterate(), terminatePartial(), merge(), and
terminate(), which have already been described.

Both UDF and UDAF can also be implemented by extending from the
GenericUDF and GenericUDAFEvaluator classes to avoid using Java
reflection for better performance. In addition, generic functions support
complex data types, such as MAP, ARRAY, and STRUCT, as arguments, while
the UDF and UDAF functions do not. For more information about
GenericUDAF, please refer to the Hive wiki at https:/ ​/ ​cwiki. ​apache.
org/​confluence/ ​display/ ​Hive/ ​GenericUDAFCaseStudy.

UDTF code template
To implement UDTF, there is only one method extending
from org.apache.hadoop.hive.ql.exec.GenericUDTF. There is no plain UDTF class.
We need to implement three methods: initialize(), process(), and close(). The
UDTF will call the initialize() method, which returns the information of the function
output, such as data type and number of output. Then, the process() method is called to
perform core function logic with arguments and forward the result. Finally, the close()
method will do a proper cleanup if needed. The code template for UDTF is as follows:

package com.packtpub.hive.essentials.hiveudtf;

import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import
org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import
org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;

https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

Extensibility Considerations Chapter 8

[148]

import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import
org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInsp
ectorFactory;

@Description(
 name = "udtf_name",
 value = "_FUNC_(arg1, arg2, ... argN) - description for the function",
 extended = "description with more detail, such as syntax, examples."
)
public class udtf_name extends GenericUDTF {
 private PrimitiveObjectInspector stringOI = null;
 /**
 * This method will be called exactly once per instance.
 * It performs any custom initialization logic we need.
 * It is also responsible for verifying the input types and
 * specifying the output types.
 */
 @Override
 public StructObjectInspector initialize(ObjectInspector[] args)
 throws UDFArgumentException {
 // Check number of arguments.
 if (args.length != 1) {
 throw new UDFArgumentException(
 "The UDTF should take exactly one argument");
 }
 /*
 * Check that the input ObjectInspector[] array contains a
 * single PrimitiveObjectInspector of the Primitive type,
 * such as String.
 */
 if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE
 &&
 ((PrimitiveObjectInspector) args[0]).getPrimitiveCategory()
 !=
 PrimitiveObjectInspector.PrimitiveCategory.STRING) {
 throw new UDFArgumentException(
 "The UDTF should take a string as a parameter");
 }

 stringOI = (PrimitiveObjectInspector) args[0];
 /*
 * Define the expected output for this function, including
 * each alias and types for the aliases.
 */
 List<String> fieldNames = new ArrayList<String>(2);
 List<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>(2);
 fieldNames.add("alias1");

Extensibility Considerations Chapter 8

[149]

 fieldNames.add("alias2");
 fieldOIs.add(PrimitiveObjectInspectorFactory.
 javaStringObjectInspector);
 fieldOIs.add(PrimitiveObjectInspectorFactory.
 javaIntObjectInspector);
 //Set up the output schema.
 return ObjectInspectorFactory.
 getStandardStructObjectInspector(fieldNames, fieldOIs);
 }

 /**
 * This method is called once per input row and generates
 * output. The "forward" method is used (instead of
 * "return") in order to specify the output from the function.
 */
 @Override
 public void process(Object[] record) throws HiveException {
 /*
 * We may need to convert the object to a primitive type
 * before implementing customized logic.
 */
 final String recStr = (String) stringOI.
 getPrimitiveJavaObject(record[0]);

 //Emit newly created structs after applying customized logic.
 forward(new Object[] {recStr, Integer.valueOf(1)});
 }

 /**
 * This method is for any cleanup that is necessary before
 * returning from the UDTF. Since the output stream has
 * already been closed at this point, this method cannot
 * emit more rows.
 */
 @Override
 public void close() throws HiveException {
 //Do nothing.
 }
}

Extensibility Considerations Chapter 8

[150]

Development and deployment
We'll go through the whole development and deployment steps with an example. Let's
create a simple function called toUpper, which converts a string to uppercase, by following
development and deployment steps:

Download and install a Java IDE, such as Eclipse or IntelliJ IDEA.1.
Start the IDE and create a Java project2.
Right-click on the project to choose the Build Path | Configure Build Path | Add3.
External Jars option. It will open a new window. Navigate to the directory with
the library of Hive and Hadoop. Then, select and add all JAR files we need to
import. We can also resolve the library dependency automatically by using
Maven (http:/ ​/​maven. ​apache. ​org/ ​); the proper pom.xml file is given in the
sample code for this book to import as a maven project.
In the IDE, create the following ToUpper.java file according to the UDF4.
template mentioned previously:

 package hive.essentials.hiveudf;
 import org.apache.hadoop.hive.ql.exec.UDF;
 import org.apache.hadoop.io.Text;
 class ToUpper extends UDF {
 public Text evaluate(Text input) {
 if(input == null) return null;
 return new Text(input.toString().toUpperCase());
 }
 }

Compile and build the project JAR file as hiveudf-1.0.jar.5.
Upload the JAR file to HDFS with the hdfs dfs -put hiveudf-1.0.jar6.
/app/hive/function/ command.
Create the function as a temporary function that is only valid in the current7.
session. As of Hive v0.13.0, we can also create a permanent function, which is
permanently registered to the metastore and can be referenced in all queries and
sessions:

 > CREATE TEMPORARY FUNCTION tmptoUpper
 > as 'com.packtpub.hive.essentials.hiveudf.toupper';
 > USING JAR 'hdfs:///app/hive/function/hiveudf-1.0.jar';

 > CREATE FUNCTION toUpper -- Create permanent function
 > as 'hive.essentials.hiveudf.ToUpper'
 > USING JAR 'hdfs:///app/hive/function/hiveudf-1.0.jar';

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Extensibility Considerations Chapter 8

[151]

Verify and check the function:8.

 > SHOW FUNCTIONS ToUpper;
 > DESCRIBE FUNCTION ToUpper;
 > DESCRIBE FUNCTION EXTENDED ToUpper;
 +--+
 | tab_name |
 +--+
 | toUpper(value) - Returns upper case of value. |
 | Synonyms: default.toupper |
 | Example: |
 | > SELECT toUpper('will'); |
 | WILL |
 | Function class:hive.essentials.hiveudf.ToUpper |
 | Function type:PERSISTENT |
 | Resource:hdfs:///app/hive/function/hiveudf-1.0.jar |
 +--+

Reload and use the function in HQL:9.

 > RELOAD FUNCTION; -- Reload all invisible functions if needed

 > SELECT
 > name, toUpper(name) as cap_name, tmptoUpper(name) as cname
 > FROM employee;
 +---------+----------+----------+
 | name | cap_name | c_name |
 +---------+----------+----------+
 | Michael | MICHAEL | MICHAEL |
 | Will | WILL | WILL |
 | Shelley | SHELLEY | SHELLEY |
 | Lucy | LUCY | LUCY |
 +---------+----------+----------+
 4 rows selected (0.363 seconds)

Drop the function when needed:10.

 > DROP TEMPORARY FUNCTION IF EXISTS tmptoUpper;
 > DROP FUNCTION IF EXISTS toUpper;

Extensibility Considerations Chapter 8

[152]

HPL/SQL
Since Hive v2.0.0, the Hadoop Procedure Language SQL (HPL/SQL)
(http://www.hplsql.org/) available to provide store procedure programming in Hive.
HPL/SQL supports Hive, Spark SQL, and Impala, and is compatible with Oracle, DB2,
MySQL, and TSQL standard. One of its benefits is making the migration of existing
database-stored procedures to Hive easy and efficient. Using HPL/SQL does not require
Java skills to implement what can be done through UDF mentioned. Compared with UDF,
HPL/SQL's performance is a little slower and it is still new for production usage.

The following is an example of creating a stored procedure. HPL/SQL supports the creation
of both Function and Procedure:

$ cat getEmpCnt.pl
CREATE PROCEDURE getCount()
BEGIN
DECLARE cnt INT = 0;
SELECT COUNT(*) INTO cnt FROM employee;
PRINT 'Users cnt: ' || cnt;
END;

call getCount(); -- Call a procedure

In order to run a procedure, we need to set up the database connection in hplsql-
site.xml by providing the hiveserver2 connection URL, as follows. After that,
HPL/SQL can use the default connection to submit the procedure statement or file:

SQL hplsql command, is in the same folder as the hive command, with the -f option, as
follows:

$ cat /opt/hive2/conf/hplsql-site.xml

 <configuration>
 <property>
 <name>hplsql.conn.default</name>
 <value>hive2conn</value>
 </property>
 <property>
 <name>hplsql.conn.hive2conn</name>
<value>org.apache.hive.jdbc.HiveDriver;jdbc:hive2://localhost:10500</value>
 </property>
 </configuration>

Extensibility Considerations Chapter 8

[153]

Then, we can call the HPL:

$cd /opt/hive2/bin
$./hplsql -f getEmpCnt.pl
SLF4J: Class path contains multiple SLF4J bindings.
...
Open connection: jdbc:hive2://localhost:10500 (1.02 sec)
Starting query
Query executed successfully (569 ms)
Users cnt: 4

Streaming
Hive can also leverage the streaming feature in Hadoop to transform data in an alternative
way. The streaming API opens an I/O pipe to an external process, such as a script. Then, the
process reads data from the standard input and writes the results out through the standard
output. In HQL, we can use TRANSFORM clauses directly to embed the mapper and the
reducer scripts written in commands, shell scripts, Java, or other programming languages.
Although streaming brings overhead by using serialization/deserialization between
processes, it provides a simple coding mode for non-Java developers. The syntax of the
TRANSFORM clause is as follows:

FROM (
 FROM src
 SELECT TRANSFORM '(' expression (',' expression)* ')'
 (inRowFormat)?
 USING 'map_user_script'
 (AS colName (',' colName)*)?
 (outRowFormat)? (outRecordReader)?
 (CLUSTER BY?|DISTRIBUTE BY? SORT BY?) src_alias
)
 SELECT TRANSFORM '(' expression (',' expression)* ')'
 (inRowFormat)?
 USING 'reduce_user_script'
 (AS colName (',' colName)*)?
 (outRowFormat)? (outRecordReader)?

Extensibility Considerations Chapter 8

[154]

By default, the INPUT values for the user script are as follows:

Columns transformed to STRING values
Delimited by a tab
NULL values converted to the N literal string (differentiates NULL values from
empty strings)

By default, the OUTPUT values of the user script are as follows:

Treated as tab-separated STRING columns
N will be reinterpreted as NULL
The resulting STRING column will be cast to the data type specified in the table
declaration

These defaults can be overridden with ROW FORMAT. An example of streaming using the
Python script upper.py is as follows:

$cat upper.py
#!/usr/bin/env python
'''
This is a script to upper all cases
'''
import sys

def main():
 try:
 for line in sys.stdin:
 n = line.strip()
 print n.upper()
 except:
 return None
if __name__ == "__main__":main()

Test the script by running it in the normal way, as follows:

$ echo "Will" | python upper.py
$ WILL

Call the script with HQL:

 > ADD FILE /tmp/upper.py;
 > SELECT
 > TRANSFORM (name,work_place[0])
 > USING 'python upper.py' as (CAP_NAME,CAP_PLACE)
 > FROM employee;

Extensibility Considerations Chapter 8

[155]

 +-----------+------------+
 | cap_name | cap_place |
 +-----------+------------+
 | MICHAEL | MONTREAL |
 | WILL | MONTREAL |
 | SHELLEY | NEW YORK |
 | LUCY | VANCOUVER |
 | STEVEN | NULL |
 +-----------+------------+
 5 rows selected (30.101 seconds)

The TRANSFORM command is not allowed when SQL standard-based
authorization is configured as of Hive v0.13.0.

SerDe
SerDe stands for Serialization and Deserialization. It is the technology used to process
records and map them to column data types in Hive tables. To explain the scenario of using
SerDe, we need to understand how Hive reads and writes data first.

The process to read data is as follows.

Data is read from HDFS.1.
Data is processed by the INPUTFORMAT implementation, which defines the input2.
data split and key/value records. In Hive, we can use CREATE TABLE ...
STORED AS <FILE_FORMAT> (see Chapter 9, Performance Considerations) to
specify which INPUTFORMAT it reads from.
The Java Deserializer class defined in SerDe is called to format the data into a3.
record that maps to column and data types in a table.

For an example of reading data, we can use JSON SerDe to read the TEXTFILE format data
from HDFS and translate each row of the JSON attribute and value to rows in Hive tables
with the correct schema.

The process to write data is as follows:

Data (such as using an INSERT statement) to be written is translated by the1.
Serializer class defined in SerDe to the format that the OUTPUTFORMAT class
can read.

Extensibility Considerations Chapter 8

[156]

Data is processed by the OUTPUTFORMAT implementation, which creates the2.
RecordWriter object. Similar to the INPUTFORMAT implementation, the
OUTPUTFORMAT implementation is specified in the same way as a table where it
writes the data.
The data is written to the table (data saved in the HDFS).3.

For an example of writing data, we can write a row-column of data to Hive tables using
JSON SerDe, which translates data to a JSON text string saved to the HDFS.

A list of commonly used SerDe (org.apache.hadoop.hive.serde2) supported is as
follows:

LazySimpleSerDe: The default built-in SerDe
(org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe) that's used
with the TEXTFILE format. It can be implemented as follows:

 > CREATE TABLE test_serde_lz
 > STORED as TEXTFILE as
 > SELECT name from employee;
 No rows affected (32.665 seconds)

ColumnarSerDe: This is the built-in SerDe used with the RCFILE and ORC
format. It can be used as follows:

 > CREATE TABLE test_serde_rc
 > STORED as RCFILE as
 > SELECT name from employee;
 No rows affected (27.187 seconds)
 > CREATE TABLE test_serde_orc
 > STORED as ORC as
 > SELECT name from employee;
 No rows affected (24.087 seconds)

RegexSerDe: This is the built-in Java regular expression used in SerDe to parse
text files. It can be used as follows:

 > CREATE TABLE test_serde_rex(
 > name string,
 > gender string,
 > age string.
 >)
 > ROW FORMAT SERDE
 > 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
 > WITH SERDEPROPERTIES(
 > 'input.regex' = '([^,]*),([^,]*),([^,]*)',

Extensibility Considerations Chapter 8

[157]

 > 'output.format.string' = '%1$s %2$s %3$s'
 >)
 > STORED AS TEXTFILE;
 No rows affected (0.266 seconds)

HBaseSerDe: This is the built-in SerDe to enable Hive to integrate with HBase.
We can map a Hive table to an existing HBase table by leveraging this SerDe for
querying as well as inserting data. Make sure the HBase daemons are running
before running the following query. More details are introduced in Chapter
1o, Working with Other Tools:

 > CREATE TABLE test_serde_hb(
 > id string,
 > name string,
 > gender string,
 > age string
 >)
 > ROW FORMAT SERDE
 > 'org.apache.hadoop.hive.hbase.HBaseSerDe'
 > STORED BY
 > 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 > WITH SERDEPROPERTIES (
 > "hbase.columns.mapping"=
 > ":key,info:name,info:gender,info:age"
 >)
 > TBLPROPERTIES("hbase.table.name" = "test_serde");
 No rows affected (0.387 seconds)

AvroSerDe: This is the built-in SerDe that enables reading and writing Avro (see
http:/​/​avro. ​apache. ​org/ ​) data in Hive tables. Avro is a remote-procedure-call
and data-serialization framework. As of Hive v0.14.0, Avro-backed tables can
simply be created by specifying the file format as AVRO, in three ways:

 > CREATE TABLE test_serde_avro(-- Specify schema directly
 > name string,
 > gender string,
 > age string
 >)
 > STORED as AVRO;
 No rows affected (0.31 seconds)

 > CREATE TABLE test_serde_avro2 -- Specify schema from properties
 > STORED as AVRO
 > TBLPROPERTIES (
 > 'avro.schema.literal'='{
 > "type":"record",

http://avro.apache.org/
http://avro.apache.org/
http://avro.apache.org/
http://avro.apache.org/
http://avro.apache.org/
http://avro.apache.org/
http://avro.apache.org/
http://avro.apache.org/
http://avro.apache.org/
http://avro.apache.org/

Extensibility Considerations Chapter 8

[158]

 > "name":"user",
 > "fields":[
 > {"name":"name", "type":"string"},
 > {"name":"gender", "type":"string", "aliases":["gender"]},
 > {"name":"age", "type":"string", "default":"null"}
 >]
 > }'
 >);
 No rows affected (0.41 seconds)

 -- Using schema file directly as follows is a more flexiable way
 > CREATE TABLE test_serde_avro3 -- Specify schema from schema
 file
 > STORED as AVRO
 > TBLPROPERTIES (
 > 'avro.schema.url'='/tmp/schema/test_avro_schema.avsc'
 >);
 No rows affected (0.21 seconds)

 -- Check the schema file
 $ cat /tmp/schema/test_avro_schema.avsc
 {
 "type" : "record",
 "name" : "test",
 "fields" : [
 {"name":"name", "type":"string"},
 {"name":"gender", "type":"string", "aliases":["gender"]},
 {"name":"age", "type":"string", "default":"null"}
]
 }

ParquetHiveSerDe: This is the built-in SerDe
(parquet.hive.serde.ParquetHiveSerDe) that enables reading and writing
the Parquet data format as of Hive v0.13.0. It can be used as follows:

 CREATE TABLE test_serde_parquet
 > STORED as PARQUET as
 > SELECT name from employee;
 No rows affected (34.079 seconds)

OpenCSVSerDe: This is the SerDe to read and write CSV data. It comes as a built-
in SerDe as of Hive v0.14.0. OpenCSVSerDe is more powerful than the built-in
row delimiter supported by supporting escape and quote specifications and so
on. It can be used as follows:

 > CREATE TABLE test_serde_csv(
 > name string,

Extensibility Considerations Chapter 8

[159]

 > gender string,
 > age string
 >)
 > ROW FORMAT SERDE
 > 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
 > WITH SERDEPROPERTIES (
 > "separatorChar" = "\t",
 > "quoteChar" = "'",
 > "escapeChar" = "\\"
 >)
 > STORED AS TEXTFILE;

JSONSerDe: JSON SerDe is available as of Hive v0.12.0 to read and write JSON
data records with Hive:

 > CREATE TABLE test_serde_js(
 > name string,
 > gender string,
 > age string
 >)
 > ROW FORMAT SERDE
 > 'org.apache.hive.hcatalog.data.JsonSerDe'
 > STORED AS TEXTFILE;
 No rows affected (0.245 seconds)

Hive also allows users to define a customized SerDe if none of these work for their data
format. For more information about custom SerDe, please refer to the Hive Wiki at https:/
/​cwiki.​apache.​org/ ​confluence/ ​display/ ​Hive/ ​DeveloperGuide#DeveloperGuide-
HowtoWriteYourOwnSerDe.

Summary
In this chapter, we introduced four main areas to extend Hive's functionalities. We also
covered three kinds of user-defined functions as well as their coding templates and
deployment steps to guide the coding and deployment process. Then, we introduced
HPL/SQL, which adds procedure-language programming to HQL. In addition, we talked
about streaming to plug in your own code, which does not have to be Java code. At the end
of this chapter, we discussed the available SerDe to parse different formats of data files
when reading or writing data. After going through this chapter, you should be able to write
basic UDFs and HPL/SQL, plug code into streams, and use available SerDe in Hive.

In the next chapter, we'll talk about security considerations.

https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe

9
Security Considerations

For most open source software, security is a critical area to address before production
release. As the leading SQL-like interface for Hadoop data, Hive must ensure that data is
securely protected and accessed. For this reason, security in Hive is always considered an
integral and important part of the ecosystem. The earlier version of Hive mainly relied on
HDFS for security. The security of Hive gradually became mature after hiveserver2 was
released.

This chapter will discuss Hive security in the following areas:

Authentication
Authorization
Mask and encryption

Authentication
Authentication is the process of verifying the identity of a user by obtaining the user's
credentials. Hive has offered authentication since hiveserver2. In the old version of
Hive, hiveserver1 does not support Kerberos authentication for thrift clients. As result, if
we could access the host/port over the network, we could access the server. Instead, we can
leverage the metastore server, which supports Kerberos, for authentication. In this
section, we will briefly talk about authentication configurations in both the metastore
server and hiveserver2.

Security Considerations Chapter 9

[161]

Kerberos is a network authentication protocol developed by MIT as part
of Project Athena. It uses time-sensitive tickets that are generated using
symmetric key cryptography to securely authenticate a user in an
unsecured network environment. Kerberos, in Greek mythology, was the
three-headed dog that guarded the gates of Hades. The three-headed part
refers to the three parties involved in the Kerberos authentication process:
client, server, and Key Distribution Center (KDC). All clients and servers
registered to KDC are known as a realm, which is typically the domain's
DNS name in all caps. For more information, please refer to the MIT
Kerberos website: http:/ ​/​web. ​mit. ​edu/​kerberos/ ​.

Metastore authentication
To force clients to authenticate with the metastore server using Kerberos, we can set the
following three properties in the hive-site.xml file and then restart the metastore
server to make it work:

Enable the Simple Authentication and Security Layer (SASL) framework to1.
enforce client Kerberos authentication, as follows:

 <property>
 <name>hive.metastore.sasl.enabled</name>
 <value>true</value>
 <description>If true, the metastore thrift interface will be
 secured with SASL framework. Clients must authenticate with
 Kerberos.</description>
 </property>

Specify the Kerberos keytab generated. Override the following example if you2.
want to keep the file in other places. Make sure the keytab file permission mask
is set to read-only permission (600) to avoid accidentally being changed or
deleted. It should also be owned by the same account (hive by default) used to
run the metastore server:

 <property>
 <name>hive.metastore.kerberos.keytab.file</name>
 <value>/etc/hive/conf/hive.keytab</value>
 <description>The sample path to the Kerberos Keytab file
 containing the metastore thrift server's service principal.
 </description>
 </property>

http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/

Security Considerations Chapter 9

[162]

Specify the Kerberos principal pattern string. The _HOST special string will be3.
replaced automatically with the correct hostname. The YOUR-REALM.COM value
should be replaced by the actual realm name:

 <property>
 <name>hive.metastore.kerberos.principal</name>
 <value>hive/_HOST@YOUR-REALM.COM</value>
 <description>The service principal for metastore server.
 </description>
 </property>

Hiveserver2 authentication
hiveserver2 supports multiple authentication modes, such as Kerberos, LDAP, PAM, and
customized code. To configure hiveserver2 to use one of these authentication modes, we
can set the proper properties in hive_site.xml as follows, and then restart the
hiveserver2 service to make it work:

NONE: None authentication is what's in the default settings. None here means it
allows anonymous access using the following setting:

 <property>
 <name>hive.server2.authentication</name>
 <value>NONE</value>
 </property>

KERBEROS: If Kerberos authentication is used, it is used to authenticate between
the thrift client and hiveserver2 and hiveserver2 and secured the HDFS. To
enable Kerberos authentication for hiveserver2, we can set the following
properties by specifying the keytab path and the actual realm name in YOUR-
REALM.COM:

 <property>
 <name>hive.server2.authentication</name>
 <value>KERBEROS</value>
 </property>
 <property>
 <name>hive.server2.authentication.kerberos.keytab</name>
 <value>/etc/hive/conf/hive.keytab</value>
 </property>
 <property>
 <name>hive.server2.authentication.kerberos.principal</name>
 <value>hive/_HOST@YOUR-REALM.COM</value>
 </property>

Security Considerations Chapter 9

[163]

Once Kerberos is enabled, the JDBC client (such as Beeline) must include
the principal parameter in the JDBC connection string, such as
jdbc:hive2://hiveserver2host:10000/default;principal=hive

/_HOST@REALM. For more examples of the supported connection string
syntax, refer to https:/ ​/​community. ​hortonworks. ​com/ ​articles/ ​4103/
hiveserver2- ​jdbc- ​connection- ​url- ​examples. ​html.

LDAP: To configure hiveserver2 to use user and password validation backed by
LDAP (see https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​Lightweight_ ​Directory_ ​Access_
Protocol), we can set the following properties:

 <property>
 <name>hive.server2.authentication</name>
 <value>LDAP</value>
 </property>
 <property>
 <name>hive.server2.authentication.ldap.url</name>
 <value>LDAP_URL, such as ldap://ldaphost@company.com</value>
 </property>
 <property>
 <name>hive.server2.authentication.ldap.Domain</name>
 <value>Domain Name</value>
 </property>

To configure it with OpenLDAP (https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​OpenLDAP), we can add
the baseDN setting instead of the preceding Domain property, as follows:

<property>
<name>hive.server2.authentication.ldap.baseDN</name>
<value>LDAP_BaseDN, such as ou=people,dc=packtpub,dc=com</value>
</property>

CUSTOM: This represents the customized authentication provider for
hiveserver2. To enable it, configure the settings as follows:

 <property>
 <name>hive.server2.authentication</name>
 <value>CUSTOM</value>
 </property>
 <property>
 <name>hive.server2.custom.authentication.class</name>
 <value>pluggable-auth-class-name</value>
 <description>Customized authentication class name, such as
 com.packtpub.hive.essentials.hiveudf.customAuthenticator
 </description>
 </property>

https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://community.hortonworks.com/articles/4103/hiveserver2-jdbc-connection-url-examples.html
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP

Security Considerations Chapter 9

[164]

Pluggable authentication with a customized class did not work until the
bug (see https:/ ​/​issues. ​apache. ​org/ ​jira/ ​browse/ ​HIVE- ​4778) was fixed
in Hive v0.13.0.

The following is a sample of a customized class that implements the
org.apache.hive.service.auth.PasswdAuthenticationProvider interface. The
overridden Authenticate(...) method has the core logic of how to authenticate a
username and password. Make sure to copy the compiled JAR file to $HIVE_HOME/lib/ so
that the preceding settings can work:

// customAuthenticator.java
package com.packtpub.hive.essentials.hiveudf;

import java.util.Hashtable;
import javax.security.sasl.AuthenticationException;
import org.apache.hive.service.auth.PasswdAuthenticationProvider;

/*
 * The customized class for hiveserver2 authentication
 */

public class customAuthenticator implements PasswdAuthenticationProvider {

 Hashtable<String, String> authHashTable = null;

 public customAuthenticator () {
 authHashTable = new Hashtable<String, String>();
 authHashTable.put("user1", "passwd1");
 authHashTable.put("user2", "passwd2");
 }

 @Override
 public void Authenticate(String user, String password)
 throws AuthenticationException {

 String storedPasswd = authHashTable.get(user);

 if (storedPasswd != null && storedPasswd.equals(password))
 return;

 throw new AuthenticationException(
 "customAuthenticator Exception: Invalid user");
 }
}

https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778
https://issues.apache.org/jira/browse/HIVE-4778

Security Considerations Chapter 9

[165]

PAM: Since Hive v0.13.0, Hive supports PAM (Pluggable Authentication
Modules) authentication, which provides the benefit of plugging existing
authentication mechanisms in to Hive. Configure the following settings to enable
PAM authentication. For more information about how to install PAM, please
refer to the Setting Up hiveserver2 article in the Hive wiki at https:/ ​/​cwiki.
apache.​org/ ​confluence/ ​display/ ​Hive/
Setting+Up+HiveServer2#SettingUpHiveServer2-

PluggableAuthenticationModules(PAM).

 <property>
 <name>hive.server2.authentication</name>
 <value>PAM</value>
 </property>
 <property>
 <name>hive.server2.authentication.pam.services</name>
 <value>pluggable-auth-class-name</value>
 <description> Set this to a list of comma-separated PAM servicesthat
 will be used. Note that a file with the same name as the PAMservice
 must exist in /etc/pam.d.</description>
 </property>

Authorization
Authorization is used to verify whether a user has permission to perform a certain action,
such as creating, reading, or writing data or metadata. Hive provides three authorization
modes: legacy mode, storage-based mode, and SQL standard-based mode.

Legacy mode
This is the default authorization mode in Hive, providing column- and row-level
authorization through HQL statements. However, it is not a completely secure
authorization mode and has a couple of limitations. It can be mainly used to prevent good
users from accidentally doing bad things rather than preventing malicious user operations.
In order to enable legacy authorization mode, we need to set the following properties in
hive-site.xml:

<property>
<name>hive.security.authorization.enabled</name>
<value>true</value>
<description>enables or disable the hive client authorization
</description>

https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)

Security Considerations Chapter 9

[166]

</property>

<property>
<name>hive.security.authorization.createtable.owner.grants</name>
<value>ALL</value>
<description>the privileges automatically granted to the owner whenever a
table gets created. An example like "select, drop" will grant select and
drop privilege to the owner of the table.
</description>
</property>

Since this is not a secure authorization mode, we will not discuss it in any more detail here.
For more HQL support in legacy authorization mode, please refer to the Hive wiki at
https:/​/​cwiki.​apache. ​org/ ​confluence/ ​display/ ​Hive/ ​Hive+Default+Authorization+-
+Legacy+Mode.

Storage-based mode
The storage-based authorization mode (since Hive v0.10.0) relies on the authorization
provided by the storage-layer HDFS, which provides both POSIX and ACL permissions
(available since Hive v0.14.0; refer to https:/ ​/​issues. ​apache. ​org/ ​jira/ ​browse/ ​HIVE-
7583). Storage-based authorization is enabled in the metastore server; it has a single
consistent view of metadata across other applications in the ecosystem. This mode checks
user permissions against the POSIX permissions on the corresponding file directories in
HDFS. In addition to the POSIX permissions model, HDFS also provides access-control lists
described in ACLs on HDFS at http:/ ​/ ​hadoop. ​apache. ​org/ ​docs/ ​r2.​4. ​0/​hadoop- ​project-
dist/​hadoop-​hdfs/ ​HdfsPermissionsGuide. ​html#ACLs_ ​Access_ ​Control_ ​Lists.

Considering its implementation, the storage-based authorization mode only offers
authorization at the level of databases, tables, and partitions rather than column- and row-
level. With dependency on the HDFS permissions, it lacks the flexibility to manage
authorization through HQL statements. To enable storage-based authorization mode, we
can set the following properties in the hive-site.xml file:

<property>
<name>hive.security.authorization.enabled</name>
<value>true</value>
<description>enable or disable the hive client authorization
</description>
</property>

</property>
<name>hive.metastore.pre.event.listeners</name>

https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
https://issues.apache.org/jira/browse/HIVE-7583
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists

Security Considerations Chapter 9

[167]

<value>org.apache.hadoop.hive.ql.security.authorization.AuthorizationPreEve
ntListener</value>
<description>This turns on metastore-side security.</description>
</property>

<property>
<name>hive.security.authorization.manager</name>
<value>org.apache.hadoop.hive.ql.security.authorization.StorageBasedAuthori
zationProvider</value>
<description>The class name of the Hive client authorization
manager.</description>
</property>

<property>
<name>hive.security.metastore.authorization.manager</name>
<value>org.apache.hadoop.hive.ql.security.HadoopDefaultMetastoreAuthenticat
or
</value>
<description>authenticator manager class name to be used in the metastore
for authentication.</description>
</property>

<property>
<name>hive.security.metastore.authorization.auth.reads</name>
<value>true</value>
<description>If this is true, metastore authorizer authorizes read actions
on database, table</description>
</property>

With effect from Hive v0.14.0, storage-based authorization also authorizes
read privileges on databases and tables by default through the
hive.security.metastore.authorization.auth.reads property.
For more information, please refer to https:/ ​/​issues. ​apache. ​org/ ​jira/
browse/ ​HIVE- ​8221.

SQL standard-based mode
For fine-grained access control on a column and row level, we can use SQL standard-based
mode, available since Hive v0.13.0. It is similar to relational database authorization by
using the GRANT and REVOKE statements to control access through the hiveserver2
configuration. However, tools such as Hive or HDFS commands do not access data through
hiveserver2, so SQL standard-based mode cannot authorize their access.

https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221
https://issues.apache.org/jira/browse/HIVE-8221

Security Considerations Chapter 9

[168]

Therefore, it is recommended you use storage-based mode together with SQL standard-
based mode to authorize users connecting from various tools. To enable SQL standard-
based mode authorization, we can set the following properties in the hive-site.xml file:

<property>
<name>hive.security.authorization.enabled</name>
<value>true</value>
<description>enable or disable the hive client authorization </description>
</property>

<property>
<name>hive.server2.enable.doAs</name>
<value>false</value>
<description>Allows Hive queries to be run by the user who submits the
query rather than the hive user. Need to turn if off for this SQL standard-
base mode</description>
</property>

<property>
<name>hive.users.in.admin.role</name>
<value>dayongd,administrator</value>
<description>Comma-separated list of users assigned to the ADMIN
role.</description>
</property>

<property>
<name>hive.security.authorization.manager</name>
<value>org.apache.hadoop.hive.ql.security.authorization.plugin.sql</value>
</property>

<property>
<name>hive.security.authenticator.manager</name>
<value>org.apache.hadoop.hive.ql.security.authorization.plugin.sqlstd.SQLSt
dConfOnlyAuthorizerFactory</value>
</property>

<property>
<name>hive.security.metastore.authorization.manager</name>
<value>org.apache.hadoop.hive.ql.security.authorization.StorageBasedAuthori
zationProvider,org.apache.hadoop.hive.ql.security.authorization.MetaStoreAu
thzAPIAuthorizerEmbedOnly</value>
<description>It takes a comma separated list, so we can add
MetaStoreAuthzAPIAuthorizerEmbedOnly along with StorageBasedAuthorization
parameter,if we want to enable that as well</description>
</property>

Security Considerations Chapter 9

[169]

In addition, we need to put the following configurations in hiveserver2-site.xml,
before restarting hiveserver2, to make SQL standard-based authorization effective:

<configuration>

<property>
<name>hive.security.authorization.enabled</name>
<value>true</value>
<description></description>
</property>

<property>
<name>hive.security.authorization.manager</name
<value>org.apache.hadoop.hive.ql.security.authorization.plugin.sqlstd.SQLSt
dHiveAuthorizerFactory</value>
</property>

<property>
<name>hive.security.authenticator.manager</name>
<value>org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator</va
lue>
</property>

<property>
<name>hive.metastore.uris</name>
<value>thrift://localhost:9085</value>
<description>Use 9083 for hive1 and 9085 for hive2</description>
</property>

</configuration>

Before restarting hiveserver2 to enable the preceding setting, do not
forget to grant admin roles to the users defined in
hive.users.in.admin.role using GRANT admin TO USER
<user_name>.

With SQL standard-based mode authorization, we can manage privileges on two levels:
role or object.

The syntax to grant or revoke an authorization at the role level is as follows:

GRANT <ROLE_NAME> TO <PRINCIPLES> [WITH ADMIN OPTION]

REVOKE [ADMIN OPTION FOR] <ROLE_NAME> FROM <PRINCIPLES>

Security Considerations Chapter 9

[170]

The usage of the parameters is as follows:

<ROLE_NAME>: This is a comma-separated role name
<PRINCIPLES>: This is a user or a role
WITH ADMIN OPTION: This is optional. Once specified, it makes sure that the
user gets the privileges to grant the role to other users/roles

On the other hand, the syntax to grant or revoke an authorization at the object level is as
follows:

GRANT <PRIVILEGE> ON <OBJECT> TO <PRINCIPLES>

REVOKE <PRIVILEGE> ON <OBJECT> FROM <PRINCIPLES>

Here, the following parameters are used:

<PRIVILEGE>: This can be INSERT, SELECT, UPDATE, DELETE, or ALL
<PRINCIPLES>: This can be a user or a role
<OBJECT>: This is a table or a view

For more examples of HQL statements to manage SQL standard-based authorization,
please refer to the Hive wiki at https:/ ​/​cwiki. ​apache. ​org/ ​confluence/ ​display/ ​Hive/
SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-

Configuration.

Apache Sentry is a highly modular system for providing centralized, fine-
grained, role-based authorization to both data and metadata stored on an
Apache Hadoop cluster. It can be integrated with Hive to deliver
advanced authorization controls. For more information about Sentry,
please refer to https:/ ​/​sentry. ​apache. ​org/ ​. Sentry is usually distributed
in the Cloudera CDH package. Another similar project is Apache Ranger
(https:/ ​/​ranger. ​apache. ​org/ ​), which is usually distributed in the
Hortonworks HDP package.

Mask and encryption
For sensitive and legally protected data, such as Personal Identity Information (PII) or
Personal Confidential Information (PCI), it is necessary to store data in encrypted or
masked format in the filesystem. Since Hive v0.13.0, its data security features have matured
in the areas of data hashing, data masking, and data encryption/decryption functions.

https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
https://sentry.apache.org/
https://sentry.apache.org/
https://sentry.apache.org/
https://sentry.apache.org/
https://sentry.apache.org/
https://sentry.apache.org/
https://sentry.apache.org/
https://sentry.apache.org/
https://sentry.apache.org/
https://sentry.apache.org/
https://ranger.apache.org/
https://ranger.apache.org/
https://ranger.apache.org/
https://ranger.apache.org/
https://ranger.apache.org/
https://ranger.apache.org/
https://ranger.apache.org/
https://ranger.apache.org/
https://ranger.apache.org/
https://ranger.apache.org/

Security Considerations Chapter 9

[171]

The data-hashing function
Before masking data was supported, the built-in hash function has been an alternative since
Hive v1.3.0. A hash function reads an input string and produces a fixed-size alphanumeric
output string. Since the output is generally uniquely (very little chance of collision)
mapping to the input string, the hashed value is quite often used to secure columns, which
are the unique identifiers for joining or comparing data. Built-in function, such as
md5(...), sha1(...), and sha2(...), can be used for data hashing in HQL:

> SELECT
> name,
> md5(name) as md5_name, -- 128 bit
> sha1(name) as sha1_name, -- 160 bit
> sha2(name, 256) as sha2_name -- 256 bit
> FROM employee;
+---------+----------------------------------+
| name | md5_name |
+---------+----------------------------------+
| Michael | 3e06fa3927cbdf4e9d93ba4541acce86 |
| Will | 2b80f09163f60ce1774b438e605eb1f9 |
| Shelley | e47e592945f28b3c3891ee9d27ec6b61 |
| Lucy | 80eb0e612760f756547b660c4c71ba7d |
+---------+----------------------------------+
+--+
| sha1_name |
+--+
| f8c38b2167c0ab6d7c720e47c2139428d77d8b6a |
| 3e3e5802bd4cad8e29e144b515307d8204a3202a |
| 2d4cab849437156354d24c9564958e6581711d08 |
| c5c8f32bdf9998e0f692231f4f969085c8dc225b |
+--+
+--+
| sha2_name |
+--+
| f089eaef57aba315bc0e1455985c0c8e40c247f073ce1f4c5a1f8ffde8773176 |
| 6cef4ccc1019d6cee6b9cad39d49cabf808ba2e0665d5832b70c44c09c2dfae0 |
| 1e8b342dde7c90cfbc9634c777b6b59388b6a4bd14274adffbfaeed4b329b26e |
| a3fa95a3b95d421c316f1a9b12c88edcc47896705976764d2652425de98f0c4f |
+--+
4 rows selected (0.344 seconds)

Security Considerations Chapter 9

[172]

The data-masking function
Since Hive v2.1.0, the data-mask function has been available in SQL as built-in UDF.
Masking data is quite often requested for user-sensitive data such as credit card numbers,
bank account numbers, and passwords. Different from the hash function, the mask function
in SQL can specify masking on partial data, which makes it more flexible when you want to
keep part of the data unmasked for better understanding. The following are examples of
using various mask functions in HQL:

> SELECT
 -- big letter to U, small letter to l, number to #
> mask("Card-0123-4567-8910", "U", "l", "#") as m0,
 -- mask first n (4) values where X|x for big/small letter, n for number
> mask_first_n("Card-0123-4567-8910", 4) as m1,
 -- mask last n (4) values
> mask_last_n("Card-0123-4567-8910", 4) as m2,
 -- mask everthing except first n(4) values
> mask_show_first_n("Card-0123-4567-8910", 4) as m3,
 -- mask everthing except last n(4) values
> mask_show_last_n("Card-0123-4567-8910", 4) as m4,
 -- return a hash value - sha 256 hex
> mask_hash('Card-0123-4567-8910') as m5
> ;
+-----------------------+-----------------------+------------------------+
| m0 | m1 | m2 |
+-----------------------+-----------------------+------------------------+
| Ulll-####-####-#### | Xxxx-0123-4567-8910 | Card-0123-4567-nnnn |
+-----------------------+-----------------------+------------------------+
+-------------------+-------------------+--------------------------------+
| m3 | m4 | m5 |
+-------------------+-------------------+--------------------------------+
|Card-nnnn-nnnn-nnnn|Xxxx-nnnn-nnnn-8910|f0679e470f380ce5183ba403ec0e7e64|
+-------------------+-------------------+--------------------------------+
1 row selected (0.146 seconds)

The data-encryption function
Since Hive v1.3.o, aes_encrypt(input string/binary, key string/binary) and
aes_decrypt(input binary, key string/binary) UDF have been provided to
support data encryption and decryption using the AES (Advanced Encryption
Standard: http:/​/ ​en. ​wikipedia. ​org/ ​wiki/ ​Advanced_ ​Encryption_ ​Standard) algorithm,
which is a symmetric 128-bit, block-data encryption technique developed by Belgian
cryptographers Joan Daemen and Vincent Rijmen.

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Security Considerations Chapter 9

[173]

The following is an example of using these functions:

-- 1st para. is value to encryped/decryped
-- 2nd para. is 128 bit (16 Byte) keys
> SELECT
> name,
> aes_encrypt(name,'1234567890123456') as encrypted,
> aes_decrypt(
> aes_encrypt(name,'1234567890123456'),
> '1234567890123456') as decrypted
> FROM employee;
+---------+-------------------------+-----------+
| name | encrypted | decrypted |
+---------+-------------------------+-----------+
| Michael | ��.b��#����-��I | Micheal |
| Will | "�""��r {cgR�%��� | Will |
| Shelley | ��W@�Dm�[-�?� | Shelley |
| Lucy | ��/i���x���L�q~ | Lucy |
+---------+------------------------+------------+
4 rows selected (0.24 seconds)

Other methods
As mentioned previously, we can use Apache Ranger or Sentry for column-level
access control to enable more granularity of security. In addition, there are patches
available to specify columns-level encoding directly on table-creation statements, such as
HIVE 6329 (https:/ ​/ ​issues. ​apache. ​org/ ​jira/​browse/ ​HIVE- ​6329) and HIVE 7934
(https:/​/​issues.​apache. ​org/ ​jira/ ​browse/ ​HIVE- ​7934). At the storage level, Hive can also
leverage HDFS encryption (https:/ ​/​issues. ​apache. ​org/ ​jira/ ​browse/ ​HDFS- ​6134), which
offers transparent encryption and decryption of data on HDFS. It will meet our
requirements if we want to encrypt an entire dataset in HDFS.

https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-6329
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HIVE-7934
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134
https://issues.apache.org/jira/browse/HDFS-6134

Security Considerations Chapter 9

[174]

Summary
In this chapter, we introduced the Hive security areas of authentication, authorization,
mask, and encryption. We covered authentications in the metastore server and
hiveserver2. Then, we talked about default, storage-based, and SQL standard-based
mode authorization. At the end of this chapter, we discussed various ways of applying data
masks and security in Hive. After going through this chapter, you should be able to address
security concerns with different authentication, authorization, and data-mask or security
methods.

In the next chapter, we'll talk about using Hive with other tools in the big data ecosystem.

10
Working with Other Tools

As one of the earliest and most popular SQL-over-Hadoop tools, Hive has many use cases
when it works with other tools to offer an end-to-end big data solution. In this chapter, we
will discuss how Hive works with other tools in the big data ecosystem for the following
areas:

The JDBC/ODBC connector
The NoSQL database
The Hue/Ambari Hive view
HCatalog
Oozie
Spark
Hivemall

The JDBC/ODBC connector
JDBC/ODBC is one of the most common ways for Hive to work with other tools. Hadoop
vendors, such as Cloudera and Hortonworks, offer free Hive JDBC/ODBC drivers so that
Hive can be connected through these drivers, which can be found at https:/ ​/​www.
cloudera.​com/​downloads/ ​connectors/ ​hive/ ​jdbc. ​html and https:/ ​/​hortonworks. ​com/
downloads/​#addons.

https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://hortonworks.com/downloads/#addons
https://hortonworks.com/downloads/#addons
https://hortonworks.com/downloads/#addons
https://hortonworks.com/downloads/#addons
https://hortonworks.com/downloads/#addons
https://hortonworks.com/downloads/#addons
https://hortonworks.com/downloads/#addons
https://hortonworks.com/downloads/#addons
https://hortonworks.com/downloads/#addons
https://hortonworks.com/downloads/#addons

Working with Other Tools Chapter 10

[176]

We can use these JDBC/ODBC connectors to connect Hive from tools such as the following:

A command-line utility, such as Beeline, mentioned in Chapter 2, Setting Up the
Hive Environment
An integrated development environment, such as Oracle SQL Developer, also
mentioned in Chapter 2, Setting Up the Hive Environment
Data extraction, transformation, loading, and integration tools, such as Talend
Open Studio (https:/ ​/​www. ​talend. ​com/ ​products/ ​talend- ​open- ​studio/ ​) and
Pentaho (https:/ ​/ ​www. ​hitachivantara. ​com/​go/ ​pentaho. ​html)
Business intelligence, reporting, and visualization tools, such as QlikView
(https:/ ​/ ​www. ​qlik. ​com) and Tableau (https:/ ​/​www. ​tableau. ​com)
Data analysis tools, such as Microsoft Excel with Power Query Add-in

Since the setting up connectors is very straightforward, please refer to the websites of the
specific tools for more detailed instructions to connect to Hive.

NoSQL
Hive not only provides a connection for data querying but also can map its external table to
a NoSQL database, such as HBase or MongoDB, with various storage handlers.

To map an existing table in HBase, Hive uses the HBaseStorageHandler class in the table-
creation statement. An example of creating a Hive external table mapping to an
existing HBase is as follows:

> CREATE TABLE hbase_table_sample(
> id int,
> value1 string,
> value2 string,
> map_value map<string, string>
>)
> STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
> WITH SERDEPROPERTIES ("hbase.columns.mapping" =
":key,cf1:val,cf2:val,cf3")
> TBLPROPERTIES ("hbase.table.name" = "table_name_in_hbase");

https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.hitachivantara.com/go/pentaho.html
https://www.qlik.com
https://www.qlik.com
https://www.qlik.com
https://www.qlik.com
https://www.qlik.com
https://www.qlik.com
https://www.qlik.com
https://www.qlik.com
https://www.qlik.com
https://www.tableau.com
https://www.tableau.com
https://www.tableau.com
https://www.tableau.com
https://www.tableau.com
https://www.tableau.com
https://www.tableau.com
https://www.tableau.com
https://www.tableau.com

Working with Other Tools Chapter 10

[177]

In this special CREATE TABLE statement, the HBaseStorageHandler class is delegating
interaction with the HBase table with HiveHBaseTableInputFormat and
HiveHBaseTableOutputFormat. The hbase.columns.mapping property is required to
map each table column defined in the statement to the HBase table columns in order. For
example, the ID, by order, maps to the HBase table's row key as :key. Sometimes, we may
need to generate the proper row key columns using Hive UDF if there is no existing
column that can be used as a row key for the HBase table. value1 maps to the val column
in the cf1 column family in the HBase table. The Hive MAP data type can be used to access
an entire column family. Each row can have a different set of columns, where the column
names correspond to the map keys, and the column values correspond to the map values,
such as the map_value column. The hbase.table.name property, which is optional,
specifies the table name known by HBase. If it is not provided, the Hive and HBase table
will have the same name, such as hbase_table_sample.

By mapping HBase tables to Hive, Hive users can insert data into the HBase table, join Hive
tables with HBase tables, and query data from HBase directly. For more information about
configurations and features in progress about Hive-HBase integration, please refer to the
Hive wiki: https:/ ​/ ​cwiki. ​apache. ​org/ ​confluence/ ​display/ ​Hive/ ​HBaseIntegration.

Using the same mechanisms, Hive can map its external table to a collection in MongoDB
(https:/​/​www.​mongodb. ​com), which is a popular document NoSQL database. To set this up,
we need to download the MongoDB storage handler JAR from https:/ ​/​github. ​com/
mongodb/​mongo-​hadoop or https:/ ​/​mvnrepository. ​com/ ​artifact/ ​org. ​mongodb. ​mongo-
hadoop/​mongo-​hadoop- ​core/ ​2. ​0. ​2. Then create the table in HQL, as follows, to map it to
the mongo_sample collection in the default database in MongoDB. Make sure MongoDB
is started before this operation:

> ADD JAR mongo-hadoop-core-2.0.2.jar;
> CREATE TABLE mongodb_table_sample(
> id int,
> value1 string,
> value2 string
>)
> STORED BY 'com.mongodb.hadoop.hive.MongoStorageHandler'
> WITH SERDEPROPERTIES (
>
'mongo.columns.mapping'='{"id":"_id","value1":"value1","value2":"value2"}')
> TBLPROPERTIES(
> 'mongo.uri'='mongodb://localhost:27017/default.mongo_sample'
>);

https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://www.mongodb.com
https://www.mongodb.com
https://www.mongodb.com
https://www.mongodb.com
https://www.mongodb.com
https://www.mongodb.com
https://www.mongodb.com
https://www.mongodb.com
https://www.mongodb.com
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2
https://mvnrepository.com/artifact/org.mongodb.mongo-hadoop/mongo-hadoop-core/2.0.2

Working with Other Tools Chapter 10

[178]

After that, we can insert or query data like we can in the HBase mapping tables. Since Hive
v2.3.0, a more generic JDBC driver-storage handler has been provided to make Hive tables
map to tables in most JDBC compatible databases. For details, see HIVE-1555 (https:/ ​/
issues.​apache.​org/ ​jira/ ​browse/ ​HIVE- ​1555).

The Hue/Ambari Hive view
Hue (http:/​/​gethue. ​com/ ​) is short for Hadoop User Experience. It is a web interface for
making the Hadoop ecosystem easier to use. For Hive users, it offers a unified web
interface for easily accessing both HDFS and Hive in an interactive environment. Hue is
installed in CDH by default, and it can also be installed in other Hadoop distributions. In
addition, Hue adds more programming-friendly features to Hive, such as:

Highlights HQL keywords
Autocompletes HQL queries
Offers live progress and logs for Hive and MapReduce jobs
Submits several queries and checks progress later
Browses data in Hive tables through a web-user interface
Navigates through the metadata
Registers UDF and adds files/archives through a web-user interface
Saves, exports, and shares query results
Creates various charts from query results

https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
https://issues.apache.org/jira/browse/HIVE-1555
http://gethue.com/
http://gethue.com/
http://gethue.com/
http://gethue.com/
http://gethue.com/
http://gethue.com/
http://gethue.com/
http://gethue.com/

Working with Other Tools Chapter 10

[179]

The following is a screenshot of the Hive editor interface in Hue:

Hue Hive editor user interface

On the other hand, the open source Hadoop cluster-management tool Ambari provides
another Hive graphic web-user interface, Hive View (latest version 2). It gives analysts and
DBAs a better user experience when performing the following functions in the browser:

Browse databases and tables
Write queries or browse query results in full-screen mode
Manage query execution jobs and history
View existing databases, tables, and their statistics
Create tables and export table DDL to source control
View visual explain plans

Working with Other Tools Chapter 10

[180]

The following is a screenshot of the Ambari Hive view version 2:

Ambari Hive view 2

HCatalog
HCatalog (see https:/ ​/ ​cwiki. ​apache. ​org/​confluence/ ​display/ ​Hive/ ​HCatalog) is a
metadata management system for Hadoop data. It stores consistent schema information for
Hadoop ecosystem tools, such as Pig, Hive, and MapReduce. By default, HCatalog
supports data in the format of RCFile, CSV, JSON, SequenceFile, ORC file, and a
customized format if InputFormat, OutputFormat, and SerDe are implemented. By using
HCatalog, users are able to directly create, edit, and expose (via its REST API) metadata,
which becomes effective immediately in all tools sharing the same piece of metadata. At
first, HCatalog was a separate Apache project from Hive. Eventually, HCatalog became
part of the Hive project in 2013 starting with Hive v0.11.0. HCatalog is built on top of the
Hive metastore and incorporates support for HQL DDL. It provides read and write
interfaces and HCatLoader and HCatStorer. For Pig, it implements Pig's load and store
interfaces. HCatalog also provides an interface for MapReduce programs by using
HCatInputFormat and HCatOutputFormat, which are very similar to other customized
formats, by implementing Hadoop's InputFormat and OutputFormat.

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog

Working with Other Tools Chapter 10

[181]

In addition, HCatalog provides a REST API from a component called WebHCat so that
HTTP requests can be made from other applications to access the metadata of Hadoop
MapReduce/Yarn, Pig, and Hive through HCatalog. There is no Hive-specific REST
interface since HCatalog uses Hive's metastore. Therefore, HCatalog can define metadata
for Hive directly through its CLI. The HCatalog CLI supports HQL
SHOW/DESCRIBE statement and the majority of Hive DDL, except the following statements,
which require triggering MapReduce jobs:

CREATE TABLE ... AS SELECT

ALTER INDEX ... REBUILD

ALTER TABLE ... CONCATENATE

ALTER TABLE ARCHIVE/UNARCHIVE PARTITION

ANALYZE TABLE ... COMPUTE STATISTICS

IMPORT/EXPORT

Oozie
Oozie (http:/​/​oozie. ​apache. ​org/ ​) is an open source workflow coordination and schedule
service to manage data-processing jobs. Oozie workflow jobs are defined in a series of
nodes in a Directed Acyclical Graph (DAG). Acyclical here means that there are no loops
in the graph and all nodes in the graph flow in one direction without going back. Oozie
workflows contain either the control-flow node or the action node:

Control-flow node: This either defines the start, end, and failed node in a
workflow, or controls the workflow execution path, such as decision, fork, and
join nodes
Action node: This defines the core data-processing action job, such as
MapReduce, Hadoop filesystem, Hive, Pig, Spark, Java, Shell, Email, and Oozie
sub-workflows. Additional types of actions are also supported by customized
extensions

http://oozie.apache.org/
http://oozie.apache.org/
http://oozie.apache.org/
http://oozie.apache.org/
http://oozie.apache.org/
http://oozie.apache.org/
http://oozie.apache.org/
http://oozie.apache.org/
http://oozie.apache.org/
http://oozie.apache.org/

Working with Other Tools Chapter 10

[182]

Oozie is a scalable, reliable, and extensible system. It can be parameterized for workflow
submission and scheduled to run automatically. Therefore, Oozie is very suitable for
lightweight data integration or maintenance jobs. The core Oozie job requires a workflow-
definition XML file and a property file. The following is an example of a workflow XML file
using hive2 action to submit a query. The workflow XML file should be uploaded to HDFS
in order to submit a job:

<!-- This is Oozie workflow definition -->
<workflow-app xmlns="uri:oozie:workflow:0.5" name="hive2-wf">
 <start to="hive2-node"/>

 <action name="hive2-node">
 <hive2 xmlns="uri:oozie:hive2-action:0.1">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>${queueName}</value>
 </property>
 </configuration>
 <!-- the hiveserver2 jdbc uri from property file -->
 <jdbc-url>${jdbcURL}</jdbc-url>
 <!-- the hdfs path for the hql -->
 <script>/tmp/hql_script.hql</script>
 <!-- pass parameters to the hql -->
 <param>database=${database}</param>
 </hive2>
 <ok to="end"/>
 <error to="fail"/>
 </action>

 <kill name="fail">
 <message>Failed for [${wf:errorMessage(wf:lastErrorNode())}]
 </message>
 </kill>
 <end name="end"/>
</workflow-app>

Working with Other Tools Chapter 10

[183]

The following are the job property files for the workflow. The property file should be kept
locally:

$ cat job.properties
nameNode=hdfs://localhost:8020
jobTracker=localhost:8032
queueName=default
examplesRoot=examples
jdbcURL=jdbc:hive2://localhost:10000/default
database=default
oozie.use.system.libpath=true
oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/app
s/hive2

We can upload the workflow.xml file to the HDFS location defined in
the oozie.wf.application.path property. Then, run the following command to submit
the job and get a job ID for job management or monitoring:

$ export OOZIE_URL=http://localhost:11000/oozie
$ oozie job -run -config job.properties
job: 0000001-161213015814745-oozie-oozi-W

Spark
As a general-purpose data engine, Apache Spark can integrate with Hive closely. Spark
SQL has supported a subset of HQL and can leverage the Hive metastore to write or
query data in Hive. This approach is also called Spark over Hive. To configure Spark, use
Hive the metastore, you only need to copy the hive-site.xml to
the ${SPARK_HOME}/conf directory. After that, running the spark-sql command will
enter the Spark SQL interactive environment, where you can write SQL to query Hive
tables.

On the other hand, Hive over Spark is a similar approach, but lets Hive use Spark as an
alternative engine. In this case, users still stay in Hive and write HQL, but run over the
Spark engine transparently. Hive over Spark requires the Yarn FairScheduler and set
hive.execution.engine=spark. For more details, refer to https:/ ​/ ​cwiki. ​apache. ​org/
confluence/​display/ ​Hive/ ​Hive+on+Spark%3A+Getting+Started.

https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started

Working with Other Tools Chapter 10

[184]

Hivemall
Apache Hivemall (https:/ ​/ ​hivemall. ​incubator. ​apache. ​org/ ​) is a collection of Hive
UDFs for machine learning. It contains a number of ML algorithm implementations across
classification, regression, recommendations, loss functions, and feature engineering, all as
UDFs. This allows end users to use SQL and only SQL to apply machine learning
algorithms to a large volume of training data. Perform the following steps to set it up:

Download Hivemall from https:/ ​/​hivemall. ​incubator. ​apache. ​org/ ​download.1.
html and put it into HDFS:

 $ hdfs fs -mkdir -p /apps/hivemall
 $ hdfs fs -put hivemall-all-xxx.jar /apps/hivemall

Create permanent functions using script here (https:/ ​/​github. ​com/ ​apache/2.
incubator- ​hivemall/ ​blob/ ​master/ ​resources/ ​ddl/ ​define- ​all-​as- ​permanent.
hive):

 > CREATE DATABASE IF NOT EXISTS hivemall; -- create a db for the
 udfs
 > USE hivemall;
 > SET hivevar:hivemall_jar=
 > hdfs:///apps/hivemall/hivemall-all-xxx.jar;
 > SOURCE define-all-as-permanent.hive;

Verify the functions are created:3.

 > SHOW functions "hivemall.*";
 hivemall.adadelta
 hivemall.adagrad
 ...

Summary
In this final chapter, we started with the Hive JDBC and ODBC connector. Then, we
introduced other popular big data tools and libraries that are often used with Hive, such as
NoSQL (HBase, MongoDB), web user interface (Hue, Ambari Hive View), HCatalog, Oozie,
Spark, and Hivemall. After going through this chapter, you should now understand how to
use other big data tools with Hive to provide end-to-end data intelligence solutions.

https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://hivemall.incubator.apache.org/download.html
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive
https://github.com/apache/incubator-hivemall/blob/master/resources/ddl/define-all-as-permanent.hive

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Big Data Analytics with Hadoop 3
Sridhar Alla

ISBN: 978-1-78862-884-6

Explore the new features of Hadoop 3 along with HDFS, YARN, and MapReduce
Get well-versed with the analytical capabilities of Hadoop ecosystem using
practical examples
Integrate Hadoop with R and Python for more efficient big data processing
Learn to use Hadoop with Apache Spark and Apache Flink for real-time data
analytics
Set up a Hadoop cluster on AWS cloud
Perform big data analytics on AWS using Elastic Map Reduce

https://www.packtpub.com/big-data-and-business-intelligence/big-data-analytics-hadoop-3

Other Books You May Enjoy

[186]

Building Data Streaming Applications with Apache Kafka
Manish Kumar, Chanchal Singh

ISBN: 978-1-78728-398-5

Learn the basics of Apache Kafka from scratch
Use the basic building blocks of a streaming application
Design effective streaming applications with Kafka using Spark, Storm &, and
Heron
Understand the importance of a low -latency , high- throughput, and fault-
tolerant messaging system
Make effective capacity planning while deploying your Kafka Application
Understand and implement the best security practices

https://www.packtpub.com/big-data-and-business-intelligence/building-data-streaming-applications-apache-kafka

Other Books You May Enjoy

[187]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

[
[EX|IM]PORT statement
 used, for exchanging data 79, 80

A
Abstract Syntax Tree (AST) 122
ACID (Atomicity, Consistency, Isolation, and

Durability) 89
AES (Advanced Encryption Standard)
 reference 172
aggregate functions 108
aggregation condition 106
Amazon EMR
 reference 20
Amazon Web Services (AWS) 20
Ambari
 reference 19
analytics functions
 cume_dist 111
 first_value 111
 lag 111
 last_value 111
 lead 111
ANALYZE statement 125
ANTLR
 reference 122
Apache Calcite
 reference 141
Apache Spark
 about 183
 reference 10, 183
Apache
 Hive, installing from 15
Arrow
 reference 10
authentication

 about 160
 Hiveserver2 authentication 162
 Metastore authentication 161
authorization
 about 165
 legacy mode 165
 SQL standard-based mode 167
 storage-based mode 166
Avro
 reference 157

B
basic aggregation 95, 97, 100
batch processing 9
big data
 about 7
 value 8
 variability 8
 variety 8
 velocity 8
 veracity 8
 visualization 8
 volatility 8
 volume 7
block sampling 119
bucket table sampling 118
buckets 51

C
CarbonData
 reference 10
Cloudbreak
 reference 20
Cloudera Director
 reference 20
Cloudera Manager

[189]

 reference 19
collections
 function tips 86
Common Table Expression (CTE) 38
complex type 26
Cost-Based Optimization (CBO)
 about 125, 140
 reference 141
Create-Table-As-Select (CTAS) 38

D
Data Definition Language (DDL) 33
data optimization
 about 130
 compression 133
 file format 131
 storage optimization 134
data types
 about 25, 30
 complex 25
 conversions 32
 primitive 25
data-encryption function 173
data-hashing function 171
data-masking function 172
data
 combining, with UNION 70
 exchanging, LOAD statement 74
 exchanging, with [EX|IM]PORT statement 79, 80
 exchanging, with INSERT keyword 75, 77, 78
 filtering, condition clause used 59, 61
 linking, with JOIN 61
 sorting 80, 82, 83, 84
database 33
date
 function tips 87
DBVisualizer
 reference 23
Derby
 reference 17
design optimization
 about 127
 bucket table design 128
 index design 128
 partition table design 127

 skewed/temporary tables, using 130
Directed Acyclic Graphs (DAGs) 139
Dremel
 reference 132
Drill
 reference 10

E
enhanced aggregation
 about 101
 Cube, using 104
 grouping sets, using 101
 ROLLUP statement, using 104
EXPLAIN statement 122, 124

F
Flink
 reference 10
functions
 aggregate functions 85
 collection functions 85
 conditional functions 85
 customized functions 85
 date functions 85
 mathematical functions 85
 string function 85
 table-generating functions 85
 type conversion functions 85
 virtual column functions 88

H
Hadoop Archive File (HAR) 132
Hadoop Distributed File System (HDFS) 10
Hadoop ecosystem
 overview 11
Hadoop Procedure Language SQL (HPL/SQL)

142, 152
HCatalog
 about 180
 reference 180
HDFS encryption
 reference 173
HIVE 6329
 reference 173

[190]

HIVE 7934
 reference 173
Hive command
 reference 20
 using 20
Hive IDE
 using 22, 23
Hive JDBC drivers
 reference 22
Hive Query Language (HQL) 12
HIVE-155
 reference 178
Hive
 benefits 13
 installing, from Apache 15
 installing, from vendors 19
 overview 12
 reference 16, 85, 177
 using, in cloud 20
Hivemall
 about 184
 download link 184
 reference 184
Hiveserver2 authentication
 about 162
 CUSTOM 163
 KERBEROS 162
 LDAP 163
 NONE 162
 PAM 165
Hue/Ambari Hive view 178
Hue
 reference 23, 178

I
Impala
 reference 10
INNER JOIN 62, 64
INSERT keyword
 used, for exchanging data 75, 77, 78
Integrated Development Environment (IDE) 22

J
JDBC/ODBC connector

 about 175
 reference 175
JIRA HIVE-11160 125
job engine
 about 139
 MR 139
 MR3, reference 140
 Spark 140
 Tez 139
job optimization
 about 135
 JVM, reusing 136
 local mode 136
 parallel execution 136
join optimization
 about 137
 bucket map join 138
 common join 137
 map join 137
 reference 139
 skew join 139
 sort merge bucket (SMB) join 138
 sort merge bucket map (SMBM) join 138
joins
 INNER JOIN 62, 64, 65
 OUTER JOIN 66
 special joins 69
 used, for linking data 61

K
Kafka Stream
 reference 10
Kerberos 160
Key Distribution Center (KDC) 160

L
legacy mode 165
Live Long And Process (LLAP) 140
LOAD statement
 used, for exchanging data 74
locks
 about 89, 93, 94
 exclusive lock 93
 reference 93

[191]

 shared lock 93
logs 126

M
mask and encryption
 about 170, 173
 data-encryption function 172
 data-hashing function 171
 data-masking function 172
Maven
 reference 150
Metastore authentication 161
MIT Kerberos
 reference 160
MongoDB storage handler
 download link 177

N
NoSQL 176
NoSQL databases
 versus Hadoop 9

O
Oozie
 about 181
 action node 181
 control-flow node 181
 reference 181
OpenLDAP
 configuration link 163
optimizer
 about 140
 Cost-Based Optimization (CBO) 141
 vectorization optimization 141
Oracle SQL Developer
 about 22
 reference 22
Out Of Memory (OOM) 65
OUTER JOIN 66, 68

P
PAM (Pluggable Authentication Modules)

authentication 165
partitions 45, 48, 50

Pentaho
 reference 176
performance utilities
 about 121
 ANALYZE statement 125
 EXPLAIN statement 122
 logs 126
Personal Confidential Information (PCI) 170
Personal Identity Information (PII) 170
primitive type 25

Q
QlikView
 reference 176
quick-start sandbox
 reference 19

R
random sampling 118
Record Columnar File (RCFILE) 132
relational database
 versus Hadoop 9
Resilient Distributed Dataset (RDD)
 reference 10

S
sampling
 about 118
 block sampling 119
 bucket table sampling 118
 random sampling 118
Samza
 reference 10
SELECT statement
 using, with project data 56, 58
Serialization and Deserialization (SerDe)
 about 142, 155, 157
 reference 159
Simple Authentication and Security Layer (SASL)

161

sort functions
 dense_rank 109
 ntile 110
 percent_rank 110

 rank 109
 row_number 109
Spark
 reference 140
SQL standard-based mode 167
SQuirrel SQL Client
 reference 23
storage-based mode 166
Storm
 reference 10
stream processing 10
streaming feature 142, 153
string
 function tips 87
Structured Query Language (SQL) 6

T
Tableau
 reference 176
tables
 about 36, 40
 alteration 42, 45
 cleaning 42
 creating 36, 38
Talend Open Studio
 reference 176
Tez
 reference 139
transactions

 about 89
 DELETE statement 91
 MERGE statement 91, 92
 UPDATE statement, using 90

U
UNION
 used, for combining data 70
user-defined function (UDF)
 about 142
 code template 143
 deployment 150
 development 150
 UDAF code template 144, 147
 UDTF code template 147

V
vectorization optimization
 reference 141
views 53, 54
virtual column functions 88

W
window functions
 about 107
 aggregate functions 108
 analytics functions 111
 expression 112, 116
 sort functions 109

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Overview of Big Data and Hive
	A short history
	Introducing big data
	The relational and NoSQL databases versus Hadoop
	Batch, real-time, and stream processing
	Overview of the Hadoop ecosystem
	Hive overview
	Summary

	Chapter 2: Setting Up the Hive Environment
	Installing Hive from Apache
	Installing Hive from vendors
	Using Hive in the cloud
	Using the Hive command
	Using the Hive IDE
	Summary

	Chapter 3: Data Definition and Description
	Understanding data types
	Data type conversions
	Data Definition Language
	Database
	Tables
	Table creation
	Table description
	Table cleaning
	Table alteration

	Partitions
	Buckets
	Views
	Summary

	Chapter 4: Data Correlation and Scope
	Project data with SELECT
	Filtering data with conditions
	Linking data with JOIN
	INNER JOIN
	OUTER JOIN
	Special joins

	Combining data with UNION
	Summary

	Chapter 5: Data Manipulation
	Data exchanging with LOAD
	Data exchange with INSERT
	Data exchange with [EX|IM]PORT
	Data sorting
	Functions
	Function tips for collections
	Function tips for date and string
	Virtual column functions

	Transactions and locks
	Transactions
	UPDATE statement
	DELETE statement
	MERGE statement

	Locks

	Summary

	Chapter 6: Data Aggregation and Sampling
	Basic aggregation
	Enhanced aggregation
	Grouping sets
	Rollup and Cube

	Aggregation condition
	Window functions
	Window aggregate functions
	Window sort functions
	Window analytics functions
	Window expression

	Sampling
	Random sampling
	Bucket table sampling
	Block sampling

	Summary

	Chapter 7: Performance Considerations
	Performance utilities
	EXPLAIN statement
	ANALYZE statement
	Logs

	Design optimization
	Partition table design
	Bucket table design
	Index design
	Use skewed/temporary tables

	Data optimization
	File format
	Compression
	Storage optimization

	Job optimization
	Local mode
	JVM reuse
	Parallel execution
	Join optimization
	Common join
	Map join
	Bucket map join
	Sort merge bucket (SMB) join
	Sort merge bucket map (SMBM) join
	Skew join

	Job engine
	Optimizer
	Vectorization optimization
	Cost-based optimization

	Summary

	Chapter 8: Extensibility Considerations
	User-defined functions
	UDF code template
	UDAF code template
	UDTF code template
	Development and deployment

	HPL/SQL
	Streaming
	SerDe
	Summary

	Chapter 9: Security Considerations
	Authentication
	Metastore authentication
	Hiveserver2 authentication

	Authorization
	Legacy mode
	Storage-based mode
	SQL standard-based mode

	Mask and encryption
	The data-hashing function
	The data-masking function
	The data-encryption function
	Other methods

	Summary

	Chapter 10: Working with Other Tools
	The JDBC/ODBC connector
	NoSQL
	The Hue/Ambari Hive view
	HCatalog
	Oozie
	Spark
	Hivemall
	Summary

	Other Books You May Enjoy
	Index

