
Hadoop MapReduce

CN7022 – Week 3

18 October 2019

Dr Amin Karami

a.karami@uel.ac.uk

www.aminkarami.com

mailto:a.karami@uel.ac.uk
http://www.aminkarami.com/

Outline

• MapReduce Programming

• Develop Hadoop applications with Driver, Mapper, and

Reducer classes using Java

• Optimizing MapReduce Performance by Partitioner

and Combiner

• Exercise several MapReduce Programming with Java

Learning Outcomes

• Be able to explain MapReduce framework

• Understand MapReduce Programming

• Be able to write MapReduce Programs by three main

classes: Driver, Mapper, and Reducer

• Understand optimization techniques for MapReduce by

Partitioner and Combiner

• Be able to write MapReduce Programs with Java language

in Eclipse IDE

MapReduce Concept
MapReduce is a programming concept for processing big data

sets using parallel and distributed algorithm running on

several machines on a Hadoop cluster. MapReduce is a

combination of two tasks: map and reduce.

The map task simply labels thus producing groups that can

be processed in a somewhat independent manner. Based on

the labelling the data is then processed by worker nodes.

Reducer is a aggregator for the similar groups of labels

created by map phase as key-value pairs.

MapReduce example

•Word Count example: key-value pairs are <word, frequency>

DataNode in HDD

TaskTracker

JobTracker sends

results to the user

User

NameNode in HDD

MapReduce phases

Mapper: Hadoop reads the split of the mapper line by line. Hadoop calls the

method map() of the mapper for every line passing it as the key/value

parameters.

Shuffle and sort: Hadoop collects all the different partitions received from

the mappers and sort them by key.

Reducer: Hadoop reads the aggregated partitions line by line. locally,

Hadoop calls the reduce() method on the reducer for every line of the input.

The reducer computes its application logic and aggregate key/value pairs.

Finally, Hadoop writes the pairs output to HDFS.

Output of MapReduce

Data type in MapReduce: Writable

• Hadoop uses simple and efficient serialization

protocol to serialize data between map and

reduce phase and these are called

Writable(s).

MapReduce in Java: requirements

• We are going to start MapReduce programming by Eclipse:

• We need at least three java classes: Driver, Mapper and

Reducer

• Then, we will optimize MapReduce performance by Partitioner

and Combiner techniques.

sudo apt-get install eclipse

The probable error in eclipse installation

• You may face with the following error:

E: Could not get lock /var/lib/dpkg/lock - open (11: Resource temporarily unavailable)

E: Unable to lock the administration directory (/var/lib/dpkg/), is another process

using it?

• Solution? Delete the lock files from cache

• Another way (not recommended):

sudo rm /var/lib/apt/lists/lock

sudo rm /var/cache/apt/archives/lock

sudo rm /var/lib/dpkg/lock

sudo killall apt apt-get

Step 1: Create a Java Project

(1) Launch Eclipse (type eclipse in cmd), then create a New

Project (ctrl+N) and name it as WordCount

(2) Then, Press Next

Step 2: Add Hadoop libraries

(3) Run hadoop version to find the source of jar files.

- Click on “Add External JARs…” from Libraries tab.

- Find Hadoop common files from:

Step 3: Add JAR libraries for Hadoop

(4) Again, click on “Add External JARs…” from Libraries tab.

- Find JAR files from:
$HADOOP_HOME$/share/hadoop/mapreduce

(5) Press Finish button.

WordCount project in Eclipse

Step 4: Create 3 Java Classes

• Create 3 classes: Driver, Mapper, and Reducer.

• Right click on the project (WordCount), and select New  Class.

Driver Class

Configure a job

Configure Input and Output

Define Mapper and Reducer Classes

Define Key/Value types in Mapper

Define Key/Value types in Reducer

Run Configuration

Run Job

Mapper Class

Reporter is responsible for reporting

Mapper code to Driver Code

Initially, Key is LongWritable and 0;

Text is the words in each mapper.

It is similar to “int one = 1” in ordinary use.

Separate each word with space.

Input

(Key, Value)
Output

(Key, Value)

For WordCout program:

Key = Word

Value = Frequency

Reducer Class

Reporter is responsible for

reporting Reducer code to

Driver Code

Input

(Key, Value) Output

(Key, Value)

Step 5: Create a JAR file

• Right click on the project (WordCount), and select Export.

Step 6: Send the file into HDFS

• In this case, we can use Hamlet.txt (in Moodle).

• Now, put it in the Hadoop:

start-all.sh

hdfs dfs -mkdir /WordCount

hdfs dfs -put <Hamlet.txt path> /WordCount

Step 7: Run the WordCount.jar

Syntax:
hadoop jar <jar file path> <driver name> <HDFS input path> <HDFS output path>

Run:
hadoop jar /home/wednesday_group/Desktop/WordCount.jar

WordCount /WordCount/Hamlet.txt /WordCount/HamletOutput

Check the output:

hdfs dfs -cat /WordCount/HamletOutput/part-00000

MapReduce Output

The Outputs in Web Browser

Optimization with Partitioner

• By default, we have just one Reducer slot.

• The main purpose of partitioner is partitioning the key/value

pairs of mapper output.

• Keys are break down into different groups and send them to

different reducers and create separate outputs.

• The partitioner phase takes place after the map phase and

before the reduce phase in the MapReduce program.

Optimization with Partitioner

• Hashpartitioner() function is responsible for executing partitioner.

• Example: we have a file containing lowercase and uppercase

words (e.g., hh EE kk bb ZZ …). Divide your output into two

separate parts, one file for lowercase words, one file for

uppercase ones.

• Example: for WordCount example, generate different outputs

based on word length. E.g., words with length 1 in 1st reducer,

with length 2 in 2nd reducer, and so on.

WordCount with Partitioner

(1) Create MyPartitioner.java class
(2) Add these 2 conf.

lines in the Driver class
(3) Export it as WordCount_Part.jar

WordCount with Partitioner

• How to check the output? cat or Web Interface

hadoop jar /home/wednesday_group/Desktop/WordCount_Part.jar

WordCount /WordCount/Hamlet.txt /WordCount/HamletOutput_Partition

Run the JAR file:

Optimization with Combiner
• If the number of key/value gets more and more, the Hadoop traffic goes

up for processing. It means that, a file with around 1GB for WordCount,

might provide 1 milion keys and associated values, and the "Application

Performance" goes down.

• MapReduce applications are limited by the bandwidth available in clusters.

Combiner minimizes the data shuffled between map and reduce tasks.

• The combiner (mini-reducer) function runs on the output of the map phase

and is used as a filtering or an aggregating step to reduce the number of

intermediate keys that are being passed to the reducer.

Map  Combiner  Partitioner  Shuffle  Sort  Reduce

Optimization with Combiner

<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1> <What,1> <do,1> <you,1>

<know,1> <about,1> <Java,1> <What,1> <is,1> <Java,1> <Virtual,1> <Machine,1>

<How,1> <Java,1> <enabled,1> <High,1> <Performance,1>

Output in one mapper:

Combiner in mapper output:

<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> <Object,1> <know,1> <about,1>

<Java,1,1,1> <is,1> <Virtual,1> <Machine,1> <How,1> <enabled,1> <High,1>

<Performance,1>

How to use Combiner? Add conf.setCombinerClass() as follows:

Exercise: Find the Max Salary
Find the maximum salary in each gender and three age

categories: less than 20, 20 to 50, greater than 50.

1) Copy the file into Hadoop
> hdfs dfs -put <input-file> <hdfs-path>

2) Write driver, mapper, partitioner,
and reducer classes

3) Export java program to a JAR file

4) Run JAR file:
> hadoop jar <file.jar> <ClassName> <input file>
<output file>

Rajee 23 female 5000
Rama 34 male 7000
Arjun 67 male 900000
Keerthi 38 female 100000
Kishore 25 male 23000
Daniel 78 male 7600
James 34 male 86000
Alex 52 male 6900
Nancy 7 female 9800
Adam 9 male 3700
Jacob 7 male 2390
Mary 6 female 9300
Clara 87 female 72000
Monica 56 female 92000

MapReduce Solution

• <key, value> = <gender, other info>

• Partitioner includes 3 categories: less than 20, 20 to 50, greater than 50.

• Max Salary goes in Reducer phase.

Driver Class

Mapper Class

Partitioner Class

Reducer Class

Output

How to execute MaxSalary project?

• Create the JAVA project and name it MaxSalary, similar to the

WordCount Project.

• Then, Download the Salary.txt file from Moodle and put it inside

the HDFS, then run the “hadoop jar” command:

• Or, simply ignore the preparation steps in Eclipse, and

download the MaxSalary_Calculate.jar file from Moodle

and execute it by “hadoop jar” command.

Summary

•MapReduce Programming

•Optimizing MapReduce Performance by Partitioner and

Combiner

•Practiced Driver, Mapper, Partitioner, Combiner and

Reducer programming with java

•Exercised several MapReduce Programming in Java

Eclipse

